Evaluate
\frac{1}{24}\approx 0.041666667
Factor
\frac{1}{2 ^ {3} \cdot 3} = 0.041666666666666664
Share
Copied to clipboard
\frac{3}{12}+\frac{1}{12}-\left(\frac{1}{6}+\frac{1}{8}\right)
Least common multiple of 4 and 12 is 12. Convert \frac{1}{4} and \frac{1}{12} to fractions with denominator 12.
\frac{3+1}{12}-\left(\frac{1}{6}+\frac{1}{8}\right)
Since \frac{3}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\frac{4}{12}-\left(\frac{1}{6}+\frac{1}{8}\right)
Add 3 and 1 to get 4.
\frac{1}{3}-\left(\frac{1}{6}+\frac{1}{8}\right)
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{1}{3}-\left(\frac{4}{24}+\frac{3}{24}\right)
Least common multiple of 6 and 8 is 24. Convert \frac{1}{6} and \frac{1}{8} to fractions with denominator 24.
\frac{1}{3}-\frac{4+3}{24}
Since \frac{4}{24} and \frac{3}{24} have the same denominator, add them by adding their numerators.
\frac{1}{3}-\frac{7}{24}
Add 4 and 3 to get 7.
\frac{8}{24}-\frac{7}{24}
Least common multiple of 3 and 24 is 24. Convert \frac{1}{3} and \frac{7}{24} to fractions with denominator 24.
\frac{8-7}{24}
Since \frac{8}{24} and \frac{7}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{24}
Subtract 7 from 8 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}