Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\frac{\frac{3}{102}-\frac{2}{102}}{\frac{1}{51}-\frac{1}{68}}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Least common multiple of 34 and 51 is 102. Convert \frac{1}{34} and \frac{1}{51} to fractions with denominator 102.
\frac{\frac{3-2}{102}}{\frac{1}{51}-\frac{1}{68}}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Since \frac{3}{102} and \frac{2}{102} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{102}}{\frac{1}{51}-\frac{1}{68}}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Subtract 2 from 3 to get 1.
\frac{\frac{1}{102}}{\frac{4}{204}-\frac{3}{204}}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Least common multiple of 51 and 68 is 204. Convert \frac{1}{51} and \frac{1}{68} to fractions with denominator 204.
\frac{\frac{1}{102}}{\frac{4-3}{204}}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Since \frac{4}{204} and \frac{3}{204} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{102}}{\frac{1}{204}}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Subtract 3 from 4 to get 1.
\frac{1}{102}\times 204+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Divide \frac{1}{102} by \frac{1}{204} by multiplying \frac{1}{102} by the reciprocal of \frac{1}{204}.
\frac{204}{102}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Multiply \frac{1}{102} and 204 to get \frac{204}{102}.
2+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Divide 204 by 102 to get 2.
2+\frac{\frac{3}{66}-\frac{2}{66}}{\frac{1}{33}-\frac{1}{44}}
Least common multiple of 22 and 33 is 66. Convert \frac{1}{22} and \frac{1}{33} to fractions with denominator 66.
2+\frac{\frac{3-2}{66}}{\frac{1}{33}-\frac{1}{44}}
Since \frac{3}{66} and \frac{2}{66} have the same denominator, subtract them by subtracting their numerators.
2+\frac{\frac{1}{66}}{\frac{1}{33}-\frac{1}{44}}
Subtract 2 from 3 to get 1.
2+\frac{\frac{1}{66}}{\frac{4}{132}-\frac{3}{132}}
Least common multiple of 33 and 44 is 132. Convert \frac{1}{33} and \frac{1}{44} to fractions with denominator 132.
2+\frac{\frac{1}{66}}{\frac{4-3}{132}}
Since \frac{4}{132} and \frac{3}{132} have the same denominator, subtract them by subtracting their numerators.
2+\frac{\frac{1}{66}}{\frac{1}{132}}
Subtract 3 from 4 to get 1.
2+\frac{1}{66}\times 132
Divide \frac{1}{66} by \frac{1}{132} by multiplying \frac{1}{66} by the reciprocal of \frac{1}{132}.
2+\frac{132}{66}
Multiply \frac{1}{66} and 132 to get \frac{132}{66}.
2+2
Divide 132 by 66 to get 2.
4
Add 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}