Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{1^{-4}}{\left(3a^{3}\right)^{-4}}
To raise \frac{1}{3a^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{\left(3a^{3}\right)^{-4}}
Calculate 1 to the power of -4 and get 1.
\frac{1}{3^{-4}\left(a^{3}\right)^{-4}}
Expand \left(3a^{3}\right)^{-4}.
\frac{1}{3^{-4}a^{-12}}
To raise a power to another power, multiply the exponents. Multiply 3 and -4 to get -12.
\frac{1}{\frac{1}{81}a^{-12}}
Calculate 3 to the power of -4 and get \frac{1}{81}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1^{-4}}{\left(3a^{3}\right)^{-4}})
To raise \frac{1}{3a^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{\left(3a^{3}\right)^{-4}})
Calculate 1 to the power of -4 and get 1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{3^{-4}\left(a^{3}\right)^{-4}})
Expand \left(3a^{3}\right)^{-4}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{3^{-4}a^{-12}})
To raise a power to another power, multiply the exponents. Multiply 3 and -4 to get -12.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{\frac{1}{81}a^{-12}})
Calculate 3 to the power of -4 and get \frac{1}{81}.
-\left(\frac{1}{81}a^{-12}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{81}a^{-12})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(\frac{1}{81}a^{-12}\right)^{-2}\left(-12\right)\times \frac{1}{81}a^{-12-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{4}{27}a^{-13}\times \left(\frac{1}{81}a^{-12}\right)^{-2}
Simplify.