Evaluate
-\frac{a^{2}}{9}+b^{2}
Expand
-\frac{a^{2}}{9}+b^{2}
Share
Copied to clipboard
\frac{1}{3}a\left(-b\right)+\frac{1}{3}a\left(-\frac{1}{3}\right)a-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Apply the distributive property by multiplying each term of \frac{1}{3}a-b by each term of -b-\frac{1}{3}a.
\frac{1}{3}a\left(-b\right)+\frac{1}{3}a^{2}\left(-\frac{1}{3}\right)-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Multiply a and a to get a^{2}.
\frac{1}{3}a\left(-b\right)+\frac{1\left(-1\right)}{3\times 3}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Multiply \frac{1}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a\left(-b\right)+\frac{-1}{9}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 3}.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+bb-b\left(-\frac{1}{3}\right)a
Multiply -1 and -1 to get 1.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+b^{2}-b\left(-\frac{1}{3}\right)a
Multiply b and b to get b^{2}.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+b^{2}+\frac{1}{3}ba
Multiply -1 and -\frac{1}{3} to get \frac{1}{3}.
-\frac{1}{3}ab-\frac{1}{9}a^{2}+b^{2}+\frac{1}{3}ba
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
-\frac{1}{9}a^{2}+b^{2}
Combine -\frac{1}{3}ab and \frac{1}{3}ba to get 0.
\frac{1}{3}a\left(-b\right)+\frac{1}{3}a\left(-\frac{1}{3}\right)a-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Apply the distributive property by multiplying each term of \frac{1}{3}a-b by each term of -b-\frac{1}{3}a.
\frac{1}{3}a\left(-b\right)+\frac{1}{3}a^{2}\left(-\frac{1}{3}\right)-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Multiply a and a to get a^{2}.
\frac{1}{3}a\left(-b\right)+\frac{1\left(-1\right)}{3\times 3}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Multiply \frac{1}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a\left(-b\right)+\frac{-1}{9}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 3}.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+bb-b\left(-\frac{1}{3}\right)a
Multiply -1 and -1 to get 1.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+b^{2}-b\left(-\frac{1}{3}\right)a
Multiply b and b to get b^{2}.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+b^{2}+\frac{1}{3}ba
Multiply -1 and -\frac{1}{3} to get \frac{1}{3}.
-\frac{1}{3}ab-\frac{1}{9}a^{2}+b^{2}+\frac{1}{3}ba
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
-\frac{1}{9}a^{2}+b^{2}
Combine -\frac{1}{3}ab and \frac{1}{3}ba to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}