Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}a\left(-b\right)+\frac{1}{3}a\left(-\frac{1}{3}\right)a-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Apply the distributive property by multiplying each term of \frac{1}{3}a-b by each term of -b-\frac{1}{3}a.
\frac{1}{3}a\left(-b\right)+\frac{1}{3}a^{2}\left(-\frac{1}{3}\right)-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Multiply a and a to get a^{2}.
\frac{1}{3}a\left(-b\right)+\frac{1\left(-1\right)}{3\times 3}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Multiply \frac{1}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a\left(-b\right)+\frac{-1}{9}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 3}.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+bb-b\left(-\frac{1}{3}\right)a
Multiply -1 and -1 to get 1.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+b^{2}-b\left(-\frac{1}{3}\right)a
Multiply b and b to get b^{2}.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+b^{2}+\frac{1}{3}ba
Multiply -1 and -\frac{1}{3} to get \frac{1}{3}.
-\frac{1}{3}ab-\frac{1}{9}a^{2}+b^{2}+\frac{1}{3}ba
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
-\frac{1}{9}a^{2}+b^{2}
Combine -\frac{1}{3}ab and \frac{1}{3}ba to get 0.
\frac{1}{3}a\left(-b\right)+\frac{1}{3}a\left(-\frac{1}{3}\right)a-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Apply the distributive property by multiplying each term of \frac{1}{3}a-b by each term of -b-\frac{1}{3}a.
\frac{1}{3}a\left(-b\right)+\frac{1}{3}a^{2}\left(-\frac{1}{3}\right)-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Multiply a and a to get a^{2}.
\frac{1}{3}a\left(-b\right)+\frac{1\left(-1\right)}{3\times 3}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Multiply \frac{1}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a\left(-b\right)+\frac{-1}{9}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 3}.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}-b\left(-b\right)-b\left(-\frac{1}{3}\right)a
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+bb-b\left(-\frac{1}{3}\right)a
Multiply -1 and -1 to get 1.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+b^{2}-b\left(-\frac{1}{3}\right)a
Multiply b and b to get b^{2}.
\frac{1}{3}a\left(-b\right)-\frac{1}{9}a^{2}+b^{2}+\frac{1}{3}ba
Multiply -1 and -\frac{1}{3} to get \frac{1}{3}.
-\frac{1}{3}ab-\frac{1}{9}a^{2}+b^{2}+\frac{1}{3}ba
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
-\frac{1}{9}a^{2}+b^{2}
Combine -\frac{1}{3}ab and \frac{1}{3}ba to get 0.