Evaluate
4a+3b
Expand
4a+3b
Share
Copied to clipboard
\frac{1}{3}a+2b-\left(-\frac{11}{3}a\right)-\left(-b\right)
To find the opposite of -\frac{11}{3}a-b, find the opposite of each term.
\frac{1}{3}a+2b+\frac{11}{3}a-\left(-b\right)
The opposite of -\frac{11}{3}a is \frac{11}{3}a.
\frac{1}{3}a+2b+\frac{11}{3}a+b
The opposite of -b is b.
4a+2b+b
Combine \frac{1}{3}a and \frac{11}{3}a to get 4a.
4a+3b
Combine 2b and b to get 3b.
\frac{1}{3}a+2b-\left(-\frac{11}{3}a\right)-\left(-b\right)
To find the opposite of -\frac{11}{3}a-b, find the opposite of each term.
\frac{1}{3}a+2b+\frac{11}{3}a-\left(-b\right)
The opposite of -\frac{11}{3}a is \frac{11}{3}a.
\frac{1}{3}a+2b+\frac{11}{3}a+b
The opposite of -b is b.
4a+2b+b
Combine \frac{1}{3}a and \frac{11}{3}a to get 4a.
4a+3b
Combine 2b and b to get 3b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}