Evaluate
\frac{17}{30}\approx 0.566666667
Factor
\frac{17}{2 \cdot 3 \cdot 5} = 0.5666666666666667
Share
Copied to clipboard
\left(\frac{5}{15}-\frac{3}{15}\right)\times \frac{1}{2}+\frac{\frac{1}{6}}{\frac{1}{3}}
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{1}{5} to fractions with denominator 15.
\frac{5-3}{15}\times \frac{1}{2}+\frac{\frac{1}{6}}{\frac{1}{3}}
Since \frac{5}{15} and \frac{3}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{15}\times \frac{1}{2}+\frac{\frac{1}{6}}{\frac{1}{3}}
Subtract 3 from 5 to get 2.
\frac{2\times 1}{15\times 2}+\frac{\frac{1}{6}}{\frac{1}{3}}
Multiply \frac{2}{15} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}+\frac{\frac{1}{6}}{\frac{1}{3}}
Cancel out 2 in both numerator and denominator.
\frac{1}{15}+\frac{1}{6}\times 3
Divide \frac{1}{6} by \frac{1}{3} by multiplying \frac{1}{6} by the reciprocal of \frac{1}{3}.
\frac{1}{15}+\frac{3}{6}
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{1}{15}+\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{2}{30}+\frac{15}{30}
Least common multiple of 15 and 2 is 30. Convert \frac{1}{15} and \frac{1}{2} to fractions with denominator 30.
\frac{2+15}{30}
Since \frac{2}{30} and \frac{15}{30} have the same denominator, add them by adding their numerators.
\frac{17}{30}
Add 2 and 15 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}