Evaluate
-\frac{2}{3}\approx -0.666666667
Factor
-\frac{2}{3} = -0.6666666666666666
Share
Copied to clipboard
\frac{\frac{4}{12}-\frac{1}{12}}{\frac{1}{8}-\frac{1}{2}}
Least common multiple of 3 and 12 is 12. Convert \frac{1}{3} and \frac{1}{12} to fractions with denominator 12.
\frac{\frac{4-1}{12}}{\frac{1}{8}-\frac{1}{2}}
Since \frac{4}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{12}}{\frac{1}{8}-\frac{1}{2}}
Subtract 1 from 4 to get 3.
\frac{\frac{1}{4}}{\frac{1}{8}-\frac{1}{2}}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{4}}{\frac{1}{8}-\frac{4}{8}}
Least common multiple of 8 and 2 is 8. Convert \frac{1}{8} and \frac{1}{2} to fractions with denominator 8.
\frac{\frac{1}{4}}{\frac{1-4}{8}}
Since \frac{1}{8} and \frac{4}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{4}}{-\frac{3}{8}}
Subtract 4 from 1 to get -3.
\frac{1}{4}\left(-\frac{8}{3}\right)
Divide \frac{1}{4} by -\frac{3}{8} by multiplying \frac{1}{4} by the reciprocal of -\frac{3}{8}.
\frac{1\left(-8\right)}{4\times 3}
Multiply \frac{1}{4} times -\frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-8}{12}
Do the multiplications in the fraction \frac{1\left(-8\right)}{4\times 3}.
-\frac{2}{3}
Reduce the fraction \frac{-8}{12} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}