Evaluate
-2\sqrt{2}\approx -2.828427125
Share
Copied to clipboard
3-\tan(60)-\left(1+\sqrt{2}\right)^{2}+\frac{3}{\sqrt{3}}
Calculate \frac{1}{3} to the power of -1 and get 3.
3-\sqrt{3}-\left(1+\sqrt{2}\right)^{2}+\frac{3}{\sqrt{3}}
Get the value of \tan(60) from trigonometric values table.
3-\sqrt{3}-\left(1+2\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)+\frac{3}{\sqrt{3}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{2}\right)^{2}.
3-\sqrt{3}-\left(1+2\sqrt{2}+2\right)+\frac{3}{\sqrt{3}}
The square of \sqrt{2} is 2.
3-\sqrt{3}-\left(3+2\sqrt{2}\right)+\frac{3}{\sqrt{3}}
Add 1 and 2 to get 3.
3-\sqrt{3}-3-2\sqrt{2}+\frac{3}{\sqrt{3}}
To find the opposite of 3+2\sqrt{2}, find the opposite of each term.
-\sqrt{3}-2\sqrt{2}+\frac{3}{\sqrt{3}}
Subtract 3 from 3 to get 0.
-\sqrt{3}-2\sqrt{2}+\frac{3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-\sqrt{3}-2\sqrt{2}+\frac{3\sqrt{3}}{3}
The square of \sqrt{3} is 3.
-\sqrt{3}-2\sqrt{2}+\sqrt{3}
Cancel out 3 and 3.
-2\sqrt{2}
Combine -\sqrt{3} and \sqrt{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}