Skip to main content
Evaluate
Tick mark Image

Share

3-\tan(60)-\left(1+\sqrt{2}\right)^{2}+\frac{3}{\sqrt{3}}
Calculate \frac{1}{3} to the power of -1 and get 3.
3-\sqrt{3}-\left(1+\sqrt{2}\right)^{2}+\frac{3}{\sqrt{3}}
Get the value of \tan(60) from trigonometric values table.
3-\sqrt{3}-\left(1+2\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)+\frac{3}{\sqrt{3}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{2}\right)^{2}.
3-\sqrt{3}-\left(1+2\sqrt{2}+2\right)+\frac{3}{\sqrt{3}}
The square of \sqrt{2} is 2.
3-\sqrt{3}-\left(3+2\sqrt{2}\right)+\frac{3}{\sqrt{3}}
Add 1 and 2 to get 3.
3-\sqrt{3}-3-2\sqrt{2}+\frac{3}{\sqrt{3}}
To find the opposite of 3+2\sqrt{2}, find the opposite of each term.
-\sqrt{3}-2\sqrt{2}+\frac{3}{\sqrt{3}}
Subtract 3 from 3 to get 0.
-\sqrt{3}-2\sqrt{2}+\frac{3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-\sqrt{3}-2\sqrt{2}+\frac{3\sqrt{3}}{3}
The square of \sqrt{3} is 3.
-\sqrt{3}-2\sqrt{2}+\sqrt{3}
Cancel out 3 and 3.
-2\sqrt{2}
Combine -\sqrt{3} and \sqrt{3} to get 0.