Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}\times 5x+\frac{1}{3}\left(-3\right)+\frac{1}{2}\left(1-x\right)=\frac{1}{4}\left(x-2\right)
Use the distributive property to multiply \frac{1}{3} by 5x-3.
\frac{5}{3}x+\frac{1}{3}\left(-3\right)+\frac{1}{2}\left(1-x\right)=\frac{1}{4}\left(x-2\right)
Multiply \frac{1}{3} and 5 to get \frac{5}{3}.
\frac{5}{3}x+\frac{-3}{3}+\frac{1}{2}\left(1-x\right)=\frac{1}{4}\left(x-2\right)
Multiply \frac{1}{3} and -3 to get \frac{-3}{3}.
\frac{5}{3}x-1+\frac{1}{2}\left(1-x\right)=\frac{1}{4}\left(x-2\right)
Divide -3 by 3 to get -1.
\frac{5}{3}x-1+\frac{1}{2}+\frac{1}{2}\left(-1\right)x=\frac{1}{4}\left(x-2\right)
Use the distributive property to multiply \frac{1}{2} by 1-x.
\frac{5}{3}x-1+\frac{1}{2}-\frac{1}{2}x=\frac{1}{4}\left(x-2\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{5}{3}x-\frac{2}{2}+\frac{1}{2}-\frac{1}{2}x=\frac{1}{4}\left(x-2\right)
Convert -1 to fraction -\frac{2}{2}.
\frac{5}{3}x+\frac{-2+1}{2}-\frac{1}{2}x=\frac{1}{4}\left(x-2\right)
Since -\frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{5}{3}x-\frac{1}{2}-\frac{1}{2}x=\frac{1}{4}\left(x-2\right)
Add -2 and 1 to get -1.
\frac{7}{6}x-\frac{1}{2}=\frac{1}{4}\left(x-2\right)
Combine \frac{5}{3}x and -\frac{1}{2}x to get \frac{7}{6}x.
\frac{7}{6}x-\frac{1}{2}=\frac{1}{4}x+\frac{1}{4}\left(-2\right)
Use the distributive property to multiply \frac{1}{4} by x-2.
\frac{7}{6}x-\frac{1}{2}=\frac{1}{4}x+\frac{-2}{4}
Multiply \frac{1}{4} and -2 to get \frac{-2}{4}.
\frac{7}{6}x-\frac{1}{2}=\frac{1}{4}x-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{7}{6}x-\frac{1}{2}-\frac{1}{4}x=-\frac{1}{2}
Subtract \frac{1}{4}x from both sides.
\frac{11}{12}x-\frac{1}{2}=-\frac{1}{2}
Combine \frac{7}{6}x and -\frac{1}{4}x to get \frac{11}{12}x.
\frac{11}{12}x=-\frac{1}{2}+\frac{1}{2}
Add \frac{1}{2} to both sides.
\frac{11}{12}x=0
Add -\frac{1}{2} and \frac{1}{2} to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since \frac{11}{12} is not equal to 0, x must be equal to 0.