( \frac { 1 } { 3 } ( 5 x - 3 ) + \frac { 1 } { 2 } ( 1 - x ) = \frac { 1 } { 4 } ( x - 2 )
Solve for x
x=0
Graph
Share
Copied to clipboard
\frac{1}{3}\times 5x+\frac{1}{3}\left(-3\right)+\frac{1}{2}\left(1-x\right)=\frac{1}{4}\left(x-2\right)
Use the distributive property to multiply \frac{1}{3} by 5x-3.
\frac{5}{3}x+\frac{1}{3}\left(-3\right)+\frac{1}{2}\left(1-x\right)=\frac{1}{4}\left(x-2\right)
Multiply \frac{1}{3} and 5 to get \frac{5}{3}.
\frac{5}{3}x+\frac{-3}{3}+\frac{1}{2}\left(1-x\right)=\frac{1}{4}\left(x-2\right)
Multiply \frac{1}{3} and -3 to get \frac{-3}{3}.
\frac{5}{3}x-1+\frac{1}{2}\left(1-x\right)=\frac{1}{4}\left(x-2\right)
Divide -3 by 3 to get -1.
\frac{5}{3}x-1+\frac{1}{2}+\frac{1}{2}\left(-1\right)x=\frac{1}{4}\left(x-2\right)
Use the distributive property to multiply \frac{1}{2} by 1-x.
\frac{5}{3}x-1+\frac{1}{2}-\frac{1}{2}x=\frac{1}{4}\left(x-2\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{5}{3}x-\frac{2}{2}+\frac{1}{2}-\frac{1}{2}x=\frac{1}{4}\left(x-2\right)
Convert -1 to fraction -\frac{2}{2}.
\frac{5}{3}x+\frac{-2+1}{2}-\frac{1}{2}x=\frac{1}{4}\left(x-2\right)
Since -\frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{5}{3}x-\frac{1}{2}-\frac{1}{2}x=\frac{1}{4}\left(x-2\right)
Add -2 and 1 to get -1.
\frac{7}{6}x-\frac{1}{2}=\frac{1}{4}\left(x-2\right)
Combine \frac{5}{3}x and -\frac{1}{2}x to get \frac{7}{6}x.
\frac{7}{6}x-\frac{1}{2}=\frac{1}{4}x+\frac{1}{4}\left(-2\right)
Use the distributive property to multiply \frac{1}{4} by x-2.
\frac{7}{6}x-\frac{1}{2}=\frac{1}{4}x+\frac{-2}{4}
Multiply \frac{1}{4} and -2 to get \frac{-2}{4}.
\frac{7}{6}x-\frac{1}{2}=\frac{1}{4}x-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{7}{6}x-\frac{1}{2}-\frac{1}{4}x=-\frac{1}{2}
Subtract \frac{1}{4}x from both sides.
\frac{11}{12}x-\frac{1}{2}=-\frac{1}{2}
Combine \frac{7}{6}x and -\frac{1}{4}x to get \frac{11}{12}x.
\frac{11}{12}x=-\frac{1}{2}+\frac{1}{2}
Add \frac{1}{2} to both sides.
\frac{11}{12}x=0
Add -\frac{1}{2} and \frac{1}{2} to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since \frac{11}{12} is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}