Evaluate
-\frac{9}{2}=-4.5
Factor
-\frac{9}{2} = -4\frac{1}{2} = -4.5
Share
Copied to clipboard
\frac{1}{3}\times 8-\frac{1}{2}\times \frac{4}{1}-2\times 2-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Anything divided by one gives itself.
\frac{8}{3}-\frac{1}{2}\times \frac{4}{1}-2\times 2-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Multiply \frac{1}{3} and 8 to get \frac{8}{3}.
\frac{8}{3}-\frac{1}{2}\times 4-2\times 2-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Anything divided by one gives itself.
\frac{8}{3}-\frac{4}{2}-2\times 2-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{8}{3}-2-2\times 2-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Divide 4 by 2 to get 2.
\frac{8}{3}-\frac{6}{3}-2\times 2-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Convert 2 to fraction \frac{6}{3}.
\frac{8-6}{3}-2\times 2-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Since \frac{8}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}-2\times 2-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Subtract 6 from 8 to get 2.
\frac{2}{3}-4-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Multiply 2 and 2 to get 4.
\frac{2}{3}-\frac{12}{3}-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Convert 4 to fraction \frac{12}{3}.
\frac{2-12}{3}-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Since \frac{2}{3} and \frac{12}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{10}{3}-\left(-\frac{1}{3}-\frac{1}{2}+2\right)
Subtract 12 from 2 to get -10.
-\frac{10}{3}-\left(-\frac{2}{6}-\frac{3}{6}+2\right)
Least common multiple of 3 and 2 is 6. Convert -\frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
-\frac{10}{3}-\left(\frac{-2-3}{6}+2\right)
Since -\frac{2}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{10}{3}-\left(-\frac{5}{6}+2\right)
Subtract 3 from -2 to get -5.
-\frac{10}{3}-\left(-\frac{5}{6}+\frac{12}{6}\right)
Convert 2 to fraction \frac{12}{6}.
-\frac{10}{3}-\frac{-5+12}{6}
Since -\frac{5}{6} and \frac{12}{6} have the same denominator, add them by adding their numerators.
-\frac{10}{3}-\frac{7}{6}
Add -5 and 12 to get 7.
-\frac{20}{6}-\frac{7}{6}
Least common multiple of 3 and 6 is 6. Convert -\frac{10}{3} and \frac{7}{6} to fractions with denominator 6.
\frac{-20-7}{6}
Since -\frac{20}{6} and \frac{7}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-27}{6}
Subtract 7 from -20 to get -27.
-\frac{9}{2}
Reduce the fraction \frac{-27}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}