Evaluate
\frac{4\sqrt{5}\left(\sqrt{15}-1\right)}{5}\approx 5.139348848
Factor
\frac{4 \sqrt{5} {(\sqrt{3} \sqrt{5} - 1)}}{5} = 5.139348848275678
Share
Copied to clipboard
\frac{1}{3}\times 3\sqrt{3}-4\sqrt{\frac{1}{5}}-2\left(\sqrt{\frac{3}{4}}-\sqrt{12}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\sqrt{3}-4\sqrt{\frac{1}{5}}-2\left(\sqrt{\frac{3}{4}}-\sqrt{12}\right)
Cancel out 3 and 3.
\sqrt{3}-4\times \frac{\sqrt{1}}{\sqrt{5}}-2\left(\sqrt{\frac{3}{4}}-\sqrt{12}\right)
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
\sqrt{3}-4\times \frac{1}{\sqrt{5}}-2\left(\sqrt{\frac{3}{4}}-\sqrt{12}\right)
Calculate the square root of 1 and get 1.
\sqrt{3}-4\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-2\left(\sqrt{\frac{3}{4}}-\sqrt{12}\right)
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{3}-4\times \frac{\sqrt{5}}{5}-2\left(\sqrt{\frac{3}{4}}-\sqrt{12}\right)
The square of \sqrt{5} is 5.
\sqrt{3}+\frac{-4\sqrt{5}}{5}-2\left(\sqrt{\frac{3}{4}}-\sqrt{12}\right)
Express -4\times \frac{\sqrt{5}}{5} as a single fraction.
\frac{5\sqrt{3}}{5}+\frac{-4\sqrt{5}}{5}-2\left(\sqrt{\frac{3}{4}}-\sqrt{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{5}{5}.
\frac{5\sqrt{3}-4\sqrt{5}}{5}-2\left(\sqrt{\frac{3}{4}}-\sqrt{12}\right)
Since \frac{5\sqrt{3}}{5} and \frac{-4\sqrt{5}}{5} have the same denominator, add them by adding their numerators.
\frac{5\sqrt{3}-4\sqrt{5}}{5}-2\left(\frac{\sqrt{3}}{\sqrt{4}}-\sqrt{12}\right)
Rewrite the square root of the division \sqrt{\frac{3}{4}} as the division of square roots \frac{\sqrt{3}}{\sqrt{4}}.
\frac{5\sqrt{3}-4\sqrt{5}}{5}-2\left(\frac{\sqrt{3}}{2}-\sqrt{12}\right)
Calculate the square root of 4 and get 2.
\frac{5\sqrt{3}-4\sqrt{5}}{5}-2\left(\frac{\sqrt{3}}{2}-2\sqrt{3}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{5\sqrt{3}-4\sqrt{5}}{5}-2\left(-\frac{3}{2}\right)\sqrt{3}
Combine \frac{\sqrt{3}}{2} and -2\sqrt{3} to get -\frac{3}{2}\sqrt{3}.
\frac{5\sqrt{3}-4\sqrt{5}}{5}-\left(-3\sqrt{3}\right)
Cancel out 2 and 2.
\frac{5\sqrt{3}-4\sqrt{5}}{5}-\frac{5\left(-3\right)\sqrt{3}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3\sqrt{3} times \frac{5}{5}.
\frac{5\sqrt{3}-4\sqrt{5}-5\left(-3\right)\sqrt{3}}{5}
Since \frac{5\sqrt{3}-4\sqrt{5}}{5} and \frac{5\left(-3\right)\sqrt{3}}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{5\sqrt{3}-4\sqrt{5}+15\sqrt{3}}{5}
Do the multiplications in 5\sqrt{3}-4\sqrt{5}-5\left(-3\right)\sqrt{3}.
\frac{20\sqrt{3}-4\sqrt{5}}{5}
Do the calculations in 5\sqrt{3}-4\sqrt{5}+15\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}