Solve for p
p=\frac{v}{11}-\frac{1}{33}
z\neq 0
Solve for v
v=11p+\frac{1}{3}
z\neq 0
Share
Copied to clipboard
3z\times \frac{1}{3}+11p\times 3z=3vz
Multiply both sides of the equation by 3z, the least common multiple of 3,z.
z+11p\times 3z=3vz
Multiply 3 and \frac{1}{3} to get 1.
z+33pz=3vz
Multiply 11 and 3 to get 33.
33pz=3vz-z
Subtract z from both sides.
33zp=3vz-z
The equation is in standard form.
\frac{33zp}{33z}=\frac{z\left(3v-1\right)}{33z}
Divide both sides by 33z.
p=\frac{z\left(3v-1\right)}{33z}
Dividing by 33z undoes the multiplication by 33z.
p=\frac{v}{11}-\frac{1}{33}
Divide z\left(-1+3v\right) by 33z.
3z\times \frac{1}{3}+11p\times 3z=3vz
Multiply both sides of the equation by 3z, the least common multiple of 3,z.
z+11p\times 3z=3vz
Multiply 3 and \frac{1}{3} to get 1.
z+33pz=3vz
Multiply 11 and 3 to get 33.
3vz=z+33pz
Swap sides so that all variable terms are on the left hand side.
3zv=33pz+z
The equation is in standard form.
\frac{3zv}{3z}=\frac{33pz+z}{3z}
Divide both sides by 3z.
v=\frac{33pz+z}{3z}
Dividing by 3z undoes the multiplication by 3z.
v=11p+\frac{1}{3}
Divide z+33zp by 3z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}