Evaluate
\frac{\left(4-9x^{2}\right)^{2}}{1296}
Expand
\frac{x^{4}}{16}-\frac{x^{2}}{18}+\frac{1}{81}
Graph
Share
Copied to clipboard
\left(\frac{2}{6}+\frac{3x}{6}\right)\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{1}{3} times \frac{2}{2}. Multiply \frac{x}{2} times \frac{3}{3}.
\frac{2+3x}{6}\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Since \frac{2}{6} and \frac{3x}{6} have the same denominator, add them by adding their numerators.
\frac{2+3x}{6}\left(\frac{4}{36}-\frac{9x^{2}}{36}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 4 is 36. Multiply \frac{1}{9} times \frac{4}{4}. Multiply \frac{x^{2}}{4} times \frac{9}{9}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{1}{3}-\frac{x}{2}\right)
Since \frac{4}{36} and \frac{9x^{2}}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{2}{6}-\frac{3x}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{1}{3} times \frac{2}{2}. Multiply \frac{x}{2} times \frac{3}{3}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\times \frac{2-3x}{6}
Since \frac{2}{6} and \frac{3x}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36}\times \frac{2-3x}{6}
Multiply \frac{2+3x}{6} times \frac{4-9x^{2}}{36} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{6\times 36\times 6}
Multiply \frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36} times \frac{2-3x}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{216\times 6}
Multiply 6 and 36 to get 216.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{1296}
Multiply 216 and 6 to get 1296.
\frac{\left(8-18x^{2}+12x-27x^{3}\right)\left(2-3x\right)}{1296}
Use the distributive property to multiply 2+3x by 4-9x^{2}.
\frac{16-72x^{2}+81x^{4}}{1296}
Use the distributive property to multiply 8-18x^{2}+12x-27x^{3} by 2-3x and combine like terms.
\left(\frac{2}{6}+\frac{3x}{6}\right)\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{1}{3} times \frac{2}{2}. Multiply \frac{x}{2} times \frac{3}{3}.
\frac{2+3x}{6}\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Since \frac{2}{6} and \frac{3x}{6} have the same denominator, add them by adding their numerators.
\frac{2+3x}{6}\left(\frac{4}{36}-\frac{9x^{2}}{36}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 4 is 36. Multiply \frac{1}{9} times \frac{4}{4}. Multiply \frac{x^{2}}{4} times \frac{9}{9}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{1}{3}-\frac{x}{2}\right)
Since \frac{4}{36} and \frac{9x^{2}}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{2}{6}-\frac{3x}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{1}{3} times \frac{2}{2}. Multiply \frac{x}{2} times \frac{3}{3}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\times \frac{2-3x}{6}
Since \frac{2}{6} and \frac{3x}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36}\times \frac{2-3x}{6}
Multiply \frac{2+3x}{6} times \frac{4-9x^{2}}{36} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{6\times 36\times 6}
Multiply \frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36} times \frac{2-3x}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{216\times 6}
Multiply 6 and 36 to get 216.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{1296}
Multiply 216 and 6 to get 1296.
\frac{\left(8-18x^{2}+12x-27x^{3}\right)\left(2-3x\right)}{1296}
Use the distributive property to multiply 2+3x by 4-9x^{2}.
\frac{16-72x^{2}+81x^{4}}{1296}
Use the distributive property to multiply 8-18x^{2}+12x-27x^{3} by 2-3x and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}