Evaluate
\frac{151}{144}\approx 1.048611111
Factor
\frac{151}{2 ^ {4} \cdot 3 ^ {2}} = 1\frac{7}{144} = 1.0486111111111112
Share
Copied to clipboard
\left(\frac{3}{2}\right)^{2}\left(\frac{2}{3}-\frac{1}{4}\right)^{2}\times \left(\frac{2}{3}\right)^{2}+\left(\frac{1}{2}\right)^{2}\left(2+\frac{1}{4}\right)-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Add \frac{1}{3} and \frac{7}{6} to get \frac{3}{2}.
\frac{9}{4}\left(\frac{2}{3}-\frac{1}{4}\right)^{2}\times \left(\frac{2}{3}\right)^{2}+\left(\frac{1}{2}\right)^{2}\left(2+\frac{1}{4}\right)-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{9}{4}\times \left(\frac{5}{12}\right)^{2}\times \left(\frac{2}{3}\right)^{2}+\left(\frac{1}{2}\right)^{2}\left(2+\frac{1}{4}\right)-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Subtract \frac{1}{4} from \frac{2}{3} to get \frac{5}{12}.
\frac{9}{4}\times \frac{25}{144}\times \left(\frac{2}{3}\right)^{2}+\left(\frac{1}{2}\right)^{2}\left(2+\frac{1}{4}\right)-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Calculate \frac{5}{12} to the power of 2 and get \frac{25}{144}.
\frac{25}{64}\times \left(\frac{2}{3}\right)^{2}+\left(\frac{1}{2}\right)^{2}\left(2+\frac{1}{4}\right)-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Multiply \frac{9}{4} and \frac{25}{144} to get \frac{25}{64}.
\frac{25}{64}\times \frac{4}{9}+\left(\frac{1}{2}\right)^{2}\left(2+\frac{1}{4}\right)-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{25}{144}+\left(\frac{1}{2}\right)^{2}\left(2+\frac{1}{4}\right)-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Multiply \frac{25}{64} and \frac{4}{9} to get \frac{25}{144}.
\frac{25}{144}+\frac{1}{4}\left(2+\frac{1}{4}\right)-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{25}{144}+\frac{1}{4}\times \frac{9}{4}-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Add 2 and \frac{1}{4} to get \frac{9}{4}.
\frac{25}{144}+\frac{9}{16}-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Multiply \frac{1}{4} and \frac{9}{4} to get \frac{9}{16}.
\frac{53}{72}-\left(\frac{1}{4}\right)^{2}\left(4-3^{2}\right)
Add \frac{25}{144} and \frac{9}{16} to get \frac{53}{72}.
\frac{53}{72}-\frac{1}{16}\left(4-3^{2}\right)
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{53}{72}-\frac{1}{16}\left(4-9\right)
Calculate 3 to the power of 2 and get 9.
\frac{53}{72}-\frac{1}{16}\left(-5\right)
Subtract 9 from 4 to get -5.
\frac{53}{72}-\left(-\frac{5}{16}\right)
Multiply \frac{1}{16} and -5 to get -\frac{5}{16}.
\frac{53}{72}+\frac{5}{16}
The opposite of -\frac{5}{16} is \frac{5}{16}.
\frac{151}{144}
Add \frac{53}{72} and \frac{5}{16} to get \frac{151}{144}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}