Evaluate
\frac{41}{7}\approx 5.857142857
Factor
\frac{41}{7} = 5\frac{6}{7} = 5.857142857142857
Share
Copied to clipboard
\frac{\frac{7}{21}+\frac{3}{21}+\frac{1}{2}}{\frac{2}{3}-\frac{1}{2}}
Least common multiple of 3 and 7 is 21. Convert \frac{1}{3} and \frac{1}{7} to fractions with denominator 21.
\frac{\frac{7+3}{21}+\frac{1}{2}}{\frac{2}{3}-\frac{1}{2}}
Since \frac{7}{21} and \frac{3}{21} have the same denominator, add them by adding their numerators.
\frac{\frac{10}{21}+\frac{1}{2}}{\frac{2}{3}-\frac{1}{2}}
Add 7 and 3 to get 10.
\frac{\frac{20}{42}+\frac{21}{42}}{\frac{2}{3}-\frac{1}{2}}
Least common multiple of 21 and 2 is 42. Convert \frac{10}{21} and \frac{1}{2} to fractions with denominator 42.
\frac{\frac{20+21}{42}}{\frac{2}{3}-\frac{1}{2}}
Since \frac{20}{42} and \frac{21}{42} have the same denominator, add them by adding their numerators.
\frac{\frac{41}{42}}{\frac{2}{3}-\frac{1}{2}}
Add 20 and 21 to get 41.
\frac{\frac{41}{42}}{\frac{4}{6}-\frac{3}{6}}
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{\frac{41}{42}}{\frac{4-3}{6}}
Since \frac{4}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{41}{42}}{\frac{1}{6}}
Subtract 3 from 4 to get 1.
\frac{41}{42}\times 6
Divide \frac{41}{42} by \frac{1}{6} by multiplying \frac{41}{42} by the reciprocal of \frac{1}{6}.
\frac{41\times 6}{42}
Express \frac{41}{42}\times 6 as a single fraction.
\frac{246}{42}
Multiply 41 and 6 to get 246.
\frac{41}{7}
Reduce the fraction \frac{246}{42} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}