Evaluate
-\frac{4}{9}\approx -0.444444444
Factor
-\frac{4}{9} = -0.4444444444444444
Share
Copied to clipboard
\left(\frac{1}{3}+\frac{1}{2}\right)\times 1\times \frac{3}{5}-\frac{17}{18}
Divide 1 by 1 to get 1.
\left(\frac{2}{6}+\frac{3}{6}\right)\times 1\times \frac{3}{5}-\frac{17}{18}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{2+3}{6}\times 1\times \frac{3}{5}-\frac{17}{18}
Since \frac{2}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{5}{6}\times 1\times \frac{3}{5}-\frac{17}{18}
Add 2 and 3 to get 5.
\frac{5}{6}\times \frac{3}{5}-\frac{17}{18}
Multiply \frac{5}{6} and 1 to get \frac{5}{6}.
\frac{5\times 3}{6\times 5}-\frac{17}{18}
Multiply \frac{5}{6} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{6}-\frac{17}{18}
Cancel out 5 in both numerator and denominator.
\frac{1}{2}-\frac{17}{18}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{9}{18}-\frac{17}{18}
Least common multiple of 2 and 18 is 18. Convert \frac{1}{2} and \frac{17}{18} to fractions with denominator 18.
\frac{9-17}{18}
Since \frac{9}{18} and \frac{17}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{-8}{18}
Subtract 17 from 9 to get -8.
-\frac{4}{9}
Reduce the fraction \frac{-8}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}