Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1^{-\frac{1}{3}}}{\left(216x^{3}\right)^{-\frac{1}{3}}}
To raise \frac{1}{216x^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{\left(216x^{3}\right)^{-\frac{1}{3}}}
Calculate 1 to the power of -\frac{1}{3} and get 1.
\frac{1}{216^{-\frac{1}{3}}\left(x^{3}\right)^{-\frac{1}{3}}}
Expand \left(216x^{3}\right)^{-\frac{1}{3}}.
\frac{1}{216^{-\frac{1}{3}}x^{-1}}
To raise a power to another power, multiply the exponents. Multiply 3 and -\frac{1}{3} to get -1.
\frac{1}{\frac{1}{6}x^{-1}}
Calculate 216 to the power of -\frac{1}{3} and get \frac{1}{6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{-\frac{1}{3}}}{\left(216x^{3}\right)^{-\frac{1}{3}}})
To raise \frac{1}{216x^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(216x^{3}\right)^{-\frac{1}{3}}})
Calculate 1 to the power of -\frac{1}{3} and get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{216^{-\frac{1}{3}}\left(x^{3}\right)^{-\frac{1}{3}}})
Expand \left(216x^{3}\right)^{-\frac{1}{3}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{216^{-\frac{1}{3}}x^{-1}})
To raise a power to another power, multiply the exponents. Multiply 3 and -\frac{1}{3} to get -1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\frac{1}{6}x^{-1}})
Calculate 216 to the power of -\frac{1}{3} and get \frac{1}{6}.
-\left(\frac{1}{6}\times \frac{1}{x}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{6}\times \frac{1}{x})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(\frac{1}{6}\times \frac{1}{x}\right)^{-2}\left(-1\right)\times \frac{1}{6}x^{-1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{1}{6}x^{-2}\times \left(\frac{1}{6}\times \frac{1}{x}\right)^{-2}
Simplify.