Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\left(\frac{5}{2}b-\frac{5}{10}ax-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Divide 5 by 5 to get 1.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\left(\frac{5}{2}b-\frac{1}{2}ax-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\frac{5}{2}b-\left(-\frac{1}{2}ax\right)-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
To find the opposite of \frac{5}{2}b-\frac{1}{2}ax-\frac{1}{3}a, find the opposite of each term.
\frac{1}{20}ax-\frac{4}{15}a-\frac{27}{10}b-\left(-\frac{1}{2}ax\right)-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine -\frac{1}{5}b and -\frac{5}{2}b to get -\frac{27}{10}b.
\frac{1}{20}ax-\frac{4}{15}a-\frac{27}{10}b+\frac{1}{2}ax-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
The opposite of -\frac{1}{2}ax is \frac{1}{2}ax.
\frac{11}{20}ax-\frac{4}{15}a-\frac{27}{10}b-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine \frac{1}{20}ax and \frac{1}{2}ax to get \frac{11}{20}ax.
\frac{11}{20}ax-\frac{4}{15}a-\frac{27}{10}b+\frac{1}{3}a+1a+\frac{-5}{10}b-\frac{1}{2}ax
The opposite of -\frac{1}{3}a is \frac{1}{3}a.
\frac{11}{20}ax+\frac{1}{15}a-\frac{27}{10}b+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine -\frac{4}{15}a and \frac{1}{3}a to get \frac{1}{15}a.
\frac{11}{20}ax+\frac{16}{15}a-\frac{27}{10}b+\frac{-5}{10}b-\frac{1}{2}ax
Combine \frac{1}{15}a and 1a to get \frac{16}{15}a.
\frac{11}{20}ax+\frac{16}{15}a-\frac{27}{10}b-\frac{1}{2}b-\frac{1}{2}ax
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
\frac{11}{20}ax+\frac{16}{15}a-\frac{16}{5}b-\frac{1}{2}ax
Combine -\frac{27}{10}b and -\frac{1}{2}b to get -\frac{16}{5}b.
\frac{1}{20}ax+\frac{16}{15}a-\frac{16}{5}b
Combine \frac{11}{20}ax and -\frac{1}{2}ax to get \frac{1}{20}ax.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\left(\frac{5}{2}b-\frac{5}{10}ax-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Divide 5 by 5 to get 1.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\left(\frac{5}{2}b-\frac{1}{2}ax-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\frac{5}{2}b-\left(-\frac{1}{2}ax\right)-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
To find the opposite of \frac{5}{2}b-\frac{1}{2}ax-\frac{1}{3}a, find the opposite of each term.
\frac{1}{20}ax-\frac{4}{15}a-\frac{27}{10}b-\left(-\frac{1}{2}ax\right)-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine -\frac{1}{5}b and -\frac{5}{2}b to get -\frac{27}{10}b.
\frac{1}{20}ax-\frac{4}{15}a-\frac{27}{10}b+\frac{1}{2}ax-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
The opposite of -\frac{1}{2}ax is \frac{1}{2}ax.
\frac{11}{20}ax-\frac{4}{15}a-\frac{27}{10}b-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine \frac{1}{20}ax and \frac{1}{2}ax to get \frac{11}{20}ax.
\frac{11}{20}ax-\frac{4}{15}a-\frac{27}{10}b+\frac{1}{3}a+1a+\frac{-5}{10}b-\frac{1}{2}ax
The opposite of -\frac{1}{3}a is \frac{1}{3}a.
\frac{11}{20}ax+\frac{1}{15}a-\frac{27}{10}b+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine -\frac{4}{15}a and \frac{1}{3}a to get \frac{1}{15}a.
\frac{11}{20}ax+\frac{16}{15}a-\frac{27}{10}b+\frac{-5}{10}b-\frac{1}{2}ax
Combine \frac{1}{15}a and 1a to get \frac{16}{15}a.
\frac{11}{20}ax+\frac{16}{15}a-\frac{27}{10}b-\frac{1}{2}b-\frac{1}{2}ax
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
\frac{11}{20}ax+\frac{16}{15}a-\frac{16}{5}b-\frac{1}{2}ax
Combine -\frac{27}{10}b and -\frac{1}{2}b to get -\frac{16}{5}b.
\frac{1}{20}ax+\frac{16}{15}a-\frac{16}{5}b
Combine \frac{11}{20}ax and -\frac{1}{2}ax to get \frac{1}{20}ax.