( \frac { 1 } { 20 } a x - \frac { 4 } { 15 } a - \frac { 1 } { 5 } b ) - ( \frac { 5 } { 2 } b - \frac { 5 } { 10 } a x - \frac { 1 } { 3 } a ) + ( \frac { 5 } { 5 } a + \frac { - 5 } { 10 } b - \frac { 1 } { 2 } a x
Evaluate
\frac{ax}{20}+\frac{16a}{15}-\frac{16b}{5}
Expand
\frac{ax}{20}+\frac{16a}{15}-\frac{16b}{5}
Graph
Share
Copied to clipboard
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\left(\frac{5}{2}b-\frac{5}{10}ax-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Divide 5 by 5 to get 1.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\left(\frac{5}{2}b-\frac{1}{2}ax-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\frac{5}{2}b-\left(-\frac{1}{2}ax\right)-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
To find the opposite of \frac{5}{2}b-\frac{1}{2}ax-\frac{1}{3}a, find the opposite of each term.
\frac{1}{20}ax-\frac{4}{15}a-\frac{27}{10}b-\left(-\frac{1}{2}ax\right)-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine -\frac{1}{5}b and -\frac{5}{2}b to get -\frac{27}{10}b.
\frac{1}{20}ax-\frac{4}{15}a-\frac{27}{10}b+\frac{1}{2}ax-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
The opposite of -\frac{1}{2}ax is \frac{1}{2}ax.
\frac{11}{20}ax-\frac{4}{15}a-\frac{27}{10}b-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine \frac{1}{20}ax and \frac{1}{2}ax to get \frac{11}{20}ax.
\frac{11}{20}ax-\frac{4}{15}a-\frac{27}{10}b+\frac{1}{3}a+1a+\frac{-5}{10}b-\frac{1}{2}ax
The opposite of -\frac{1}{3}a is \frac{1}{3}a.
\frac{11}{20}ax+\frac{1}{15}a-\frac{27}{10}b+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine -\frac{4}{15}a and \frac{1}{3}a to get \frac{1}{15}a.
\frac{11}{20}ax+\frac{16}{15}a-\frac{27}{10}b+\frac{-5}{10}b-\frac{1}{2}ax
Combine \frac{1}{15}a and 1a to get \frac{16}{15}a.
\frac{11}{20}ax+\frac{16}{15}a-\frac{27}{10}b-\frac{1}{2}b-\frac{1}{2}ax
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
\frac{11}{20}ax+\frac{16}{15}a-\frac{16}{5}b-\frac{1}{2}ax
Combine -\frac{27}{10}b and -\frac{1}{2}b to get -\frac{16}{5}b.
\frac{1}{20}ax+\frac{16}{15}a-\frac{16}{5}b
Combine \frac{11}{20}ax and -\frac{1}{2}ax to get \frac{1}{20}ax.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\left(\frac{5}{2}b-\frac{5}{10}ax-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Divide 5 by 5 to get 1.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\left(\frac{5}{2}b-\frac{1}{2}ax-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{20}ax-\frac{4}{15}a-\frac{1}{5}b-\frac{5}{2}b-\left(-\frac{1}{2}ax\right)-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
To find the opposite of \frac{5}{2}b-\frac{1}{2}ax-\frac{1}{3}a, find the opposite of each term.
\frac{1}{20}ax-\frac{4}{15}a-\frac{27}{10}b-\left(-\frac{1}{2}ax\right)-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine -\frac{1}{5}b and -\frac{5}{2}b to get -\frac{27}{10}b.
\frac{1}{20}ax-\frac{4}{15}a-\frac{27}{10}b+\frac{1}{2}ax-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
The opposite of -\frac{1}{2}ax is \frac{1}{2}ax.
\frac{11}{20}ax-\frac{4}{15}a-\frac{27}{10}b-\left(-\frac{1}{3}a\right)+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine \frac{1}{20}ax and \frac{1}{2}ax to get \frac{11}{20}ax.
\frac{11}{20}ax-\frac{4}{15}a-\frac{27}{10}b+\frac{1}{3}a+1a+\frac{-5}{10}b-\frac{1}{2}ax
The opposite of -\frac{1}{3}a is \frac{1}{3}a.
\frac{11}{20}ax+\frac{1}{15}a-\frac{27}{10}b+1a+\frac{-5}{10}b-\frac{1}{2}ax
Combine -\frac{4}{15}a and \frac{1}{3}a to get \frac{1}{15}a.
\frac{11}{20}ax+\frac{16}{15}a-\frac{27}{10}b+\frac{-5}{10}b-\frac{1}{2}ax
Combine \frac{1}{15}a and 1a to get \frac{16}{15}a.
\frac{11}{20}ax+\frac{16}{15}a-\frac{27}{10}b-\frac{1}{2}b-\frac{1}{2}ax
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
\frac{11}{20}ax+\frac{16}{15}a-\frac{16}{5}b-\frac{1}{2}ax
Combine -\frac{27}{10}b and -\frac{1}{2}b to get -\frac{16}{5}b.
\frac{1}{20}ax+\frac{16}{15}a-\frac{16}{5}b
Combine \frac{11}{20}ax and -\frac{1}{2}ax to get \frac{1}{20}ax.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}