Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{2}xy\right)^{2}-\left(y^{2}\right)^{2}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Consider \left(\frac{1}{2}xy-y^{2}\right)\left(\frac{1}{2}xy+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}xy\right)^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(\frac{1}{2}\right)^{2}x^{2}y^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Expand \left(\frac{1}{2}xy\right)^{2}.
\frac{1}{4}x^{2}y^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}y^{2}-y^{4}-\left(y^{4}+\frac{1}{4}y^{2}x^{2}\right)+4y^{2}
Use the distributive property to multiply y^{2} by y^{2}+\frac{1}{4}x^{2}.
\frac{1}{4}x^{2}y^{2}-y^{4}-y^{4}-\frac{1}{4}y^{2}x^{2}+4y^{2}
To find the opposite of y^{4}+\frac{1}{4}y^{2}x^{2}, find the opposite of each term.
\frac{1}{4}x^{2}y^{2}-2y^{4}-\frac{1}{4}y^{2}x^{2}+4y^{2}
Combine -y^{4} and -y^{4} to get -2y^{4}.
-2y^{4}+4y^{2}
Combine \frac{1}{4}x^{2}y^{2} and -\frac{1}{4}y^{2}x^{2} to get 0.
\left(\frac{1}{2}xy\right)^{2}-\left(y^{2}\right)^{2}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Consider \left(\frac{1}{2}xy-y^{2}\right)\left(\frac{1}{2}xy+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}xy\right)^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(\frac{1}{2}\right)^{2}x^{2}y^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Expand \left(\frac{1}{2}xy\right)^{2}.
\frac{1}{4}x^{2}y^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}y^{2}-y^{4}-\left(y^{4}+\frac{1}{4}y^{2}x^{2}\right)+4y^{2}
Use the distributive property to multiply y^{2} by y^{2}+\frac{1}{4}x^{2}.
\frac{1}{4}x^{2}y^{2}-y^{4}-y^{4}-\frac{1}{4}y^{2}x^{2}+4y^{2}
To find the opposite of y^{4}+\frac{1}{4}y^{2}x^{2}, find the opposite of each term.
\frac{1}{4}x^{2}y^{2}-2y^{4}-\frac{1}{4}y^{2}x^{2}+4y^{2}
Combine -y^{4} and -y^{4} to get -2y^{4}.
-2y^{4}+4y^{2}
Combine \frac{1}{4}x^{2}y^{2} and -\frac{1}{4}y^{2}x^{2} to get 0.