Evaluate
4y^{2}-2y^{4}
Expand
4y^{2}-2y^{4}
Share
Copied to clipboard
\left(\frac{1}{2}xy\right)^{2}-\left(y^{2}\right)^{2}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Consider \left(\frac{1}{2}xy-y^{2}\right)\left(\frac{1}{2}xy+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}xy\right)^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(\frac{1}{2}\right)^{2}x^{2}y^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Expand \left(\frac{1}{2}xy\right)^{2}.
\frac{1}{4}x^{2}y^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}y^{2}-y^{4}-\left(y^{4}+\frac{1}{4}y^{2}x^{2}\right)+4y^{2}
Use the distributive property to multiply y^{2} by y^{2}+\frac{1}{4}x^{2}.
\frac{1}{4}x^{2}y^{2}-y^{4}-y^{4}-\frac{1}{4}y^{2}x^{2}+4y^{2}
To find the opposite of y^{4}+\frac{1}{4}y^{2}x^{2}, find the opposite of each term.
\frac{1}{4}x^{2}y^{2}-2y^{4}-\frac{1}{4}y^{2}x^{2}+4y^{2}
Combine -y^{4} and -y^{4} to get -2y^{4}.
-2y^{4}+4y^{2}
Combine \frac{1}{4}x^{2}y^{2} and -\frac{1}{4}y^{2}x^{2} to get 0.
\left(\frac{1}{2}xy\right)^{2}-\left(y^{2}\right)^{2}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Consider \left(\frac{1}{2}xy-y^{2}\right)\left(\frac{1}{2}xy+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}xy\right)^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(\frac{1}{2}\right)^{2}x^{2}y^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Expand \left(\frac{1}{2}xy\right)^{2}.
\frac{1}{4}x^{2}y^{2}-y^{4}-y^{2}\left(y^{2}+\frac{1}{4}x^{2}\right)+4y^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}y^{2}-y^{4}-\left(y^{4}+\frac{1}{4}y^{2}x^{2}\right)+4y^{2}
Use the distributive property to multiply y^{2} by y^{2}+\frac{1}{4}x^{2}.
\frac{1}{4}x^{2}y^{2}-y^{4}-y^{4}-\frac{1}{4}y^{2}x^{2}+4y^{2}
To find the opposite of y^{4}+\frac{1}{4}y^{2}x^{2}, find the opposite of each term.
\frac{1}{4}x^{2}y^{2}-2y^{4}-\frac{1}{4}y^{2}x^{2}+4y^{2}
Combine -y^{4} and -y^{4} to get -2y^{4}.
-2y^{4}+4y^{2}
Combine \frac{1}{4}x^{2}y^{2} and -\frac{1}{4}y^{2}x^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}