Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}x^{2}-xy+y^{2}-\left(\frac{1}{2}x+y\right)^{2}-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}x-y\right)^{2}.
\frac{1}{4}x^{2}-xy+y^{2}-\left(\frac{1}{4}x^{2}+xy+y^{2}\right)-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+y\right)^{2}.
\frac{1}{4}x^{2}-xy+y^{2}-\frac{1}{4}x^{2}-xy-y^{2}-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
To find the opposite of \frac{1}{4}x^{2}+xy+y^{2}, find the opposite of each term.
-xy+y^{2}-xy-y^{2}-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Combine \frac{1}{4}x^{2} and -\frac{1}{4}x^{2} to get 0.
-2xy+y^{2}-y^{2}-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Combine -xy and -xy to get -2xy.
-2xy-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Combine y^{2} and -y^{2} to get 0.
-2xy-\left(\left(-\frac{1}{2}x\right)^{2}-y^{2}\right)+\left(\frac{1}{2}x+2y\right)^{2}
Consider \left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-2xy-\left(\left(-\frac{1}{2}\right)^{2}x^{2}-y^{2}\right)+\left(\frac{1}{2}x+2y\right)^{2}
Expand \left(-\frac{1}{2}x\right)^{2}.
-2xy-\left(\frac{1}{4}x^{2}-y^{2}\right)+\left(\frac{1}{2}x+2y\right)^{2}
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
-2xy-\frac{1}{4}x^{2}+y^{2}+\left(\frac{1}{2}x+2y\right)^{2}
To find the opposite of \frac{1}{4}x^{2}-y^{2}, find the opposite of each term.
-2xy-\frac{1}{4}x^{2}+y^{2}+\frac{1}{4}x^{2}+2xy+4y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+2y\right)^{2}.
-2xy+y^{2}+2xy+4y^{2}
Combine -\frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get 0.
y^{2}+4y^{2}
Combine -2xy and 2xy to get 0.
5y^{2}
Combine y^{2} and 4y^{2} to get 5y^{2}.
\frac{1}{4}x^{2}-xy+y^{2}-\left(\frac{1}{2}x+y\right)^{2}-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}x-y\right)^{2}.
\frac{1}{4}x^{2}-xy+y^{2}-\left(\frac{1}{4}x^{2}+xy+y^{2}\right)-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+y\right)^{2}.
\frac{1}{4}x^{2}-xy+y^{2}-\frac{1}{4}x^{2}-xy-y^{2}-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
To find the opposite of \frac{1}{4}x^{2}+xy+y^{2}, find the opposite of each term.
-xy+y^{2}-xy-y^{2}-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Combine \frac{1}{4}x^{2} and -\frac{1}{4}x^{2} to get 0.
-2xy+y^{2}-y^{2}-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Combine -xy and -xy to get -2xy.
-2xy-\left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right)+\left(\frac{1}{2}x+2y\right)^{2}
Combine y^{2} and -y^{2} to get 0.
-2xy-\left(\left(-\frac{1}{2}x\right)^{2}-y^{2}\right)+\left(\frac{1}{2}x+2y\right)^{2}
Consider \left(-\frac{1}{2}x+y\right)\left(-\frac{1}{2}x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-2xy-\left(\left(-\frac{1}{2}\right)^{2}x^{2}-y^{2}\right)+\left(\frac{1}{2}x+2y\right)^{2}
Expand \left(-\frac{1}{2}x\right)^{2}.
-2xy-\left(\frac{1}{4}x^{2}-y^{2}\right)+\left(\frac{1}{2}x+2y\right)^{2}
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
-2xy-\frac{1}{4}x^{2}+y^{2}+\left(\frac{1}{2}x+2y\right)^{2}
To find the opposite of \frac{1}{4}x^{2}-y^{2}, find the opposite of each term.
-2xy-\frac{1}{4}x^{2}+y^{2}+\frac{1}{4}x^{2}+2xy+4y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+2y\right)^{2}.
-2xy+y^{2}+2xy+4y^{2}
Combine -\frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get 0.
y^{2}+4y^{2}
Combine -2xy and 2xy to get 0.
5y^{2}
Combine y^{2} and 4y^{2} to get 5y^{2}.