Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Consider \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Combine \frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Subtract 1 from 1 to get 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Consider \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Expand \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Combine \frac{1}{2}x^{2} and \frac{1}{4}x^{2} to get \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Combine \frac{3}{4}x^{2} and \frac{1}{4}x^{2} to get x^{2}.
x^{2}+1-1
Combine -x and x to get 0.
x^{2}
Subtract 1 from 1 to get 0.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Consider \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Combine \frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Subtract 1 from 1 to get 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Consider \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Expand \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Combine \frac{1}{2}x^{2} and \frac{1}{4}x^{2} to get \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Combine \frac{3}{4}x^{2} and \frac{1}{4}x^{2} to get x^{2}.
x^{2}+1-1
Combine -x and x to get 0.
x^{2}
Subtract 1 from 1 to get 0.