Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{3+1}{3}x+\frac{9}{2}y\right)
Multiply 1 and 3 to get 3.
\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{4}{3}x+\frac{9}{2}y\right)
Add 3 and 1 to get 4.
\frac{1}{2}x\times \frac{4}{3}x+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y\times \frac{9}{2}y
Apply the distributive property by multiplying each term of \frac{1}{2}x-\frac{1}{3}y by each term of \frac{4}{3}x+\frac{9}{2}y.
\frac{1}{2}x^{2}\times \frac{4}{3}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y\times \frac{9}{2}y
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}\times \frac{4}{3}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Multiply y and y to get y^{2}.
\frac{1\times 4}{2\times 3}x^{2}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Multiply \frac{1}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{6}x^{2}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Do the multiplications in the fraction \frac{1\times 4}{2\times 3}.
\frac{2}{3}x^{2}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x^{2}+\frac{1\times 9}{2\times 2}xy-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Multiply \frac{1}{2} times \frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}x^{2}+\frac{9}{4}xy-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Do the multiplications in the fraction \frac{1\times 9}{2\times 2}.
\frac{2}{3}x^{2}+\frac{9}{4}xy+\frac{-4}{3\times 3}yx-\frac{1}{3}y^{2}\times \frac{9}{2}
Multiply -\frac{1}{3} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}x^{2}+\frac{9}{4}xy+\frac{-4}{9}yx-\frac{1}{3}y^{2}\times \frac{9}{2}
Do the multiplications in the fraction \frac{-4}{3\times 3}.
\frac{2}{3}x^{2}+\frac{9}{4}xy-\frac{4}{9}yx-\frac{1}{3}y^{2}\times \frac{9}{2}
Fraction \frac{-4}{9} can be rewritten as -\frac{4}{9} by extracting the negative sign.
\frac{2}{3}x^{2}+\frac{65}{36}xy-\frac{1}{3}y^{2}\times \frac{9}{2}
Combine \frac{9}{4}xy and -\frac{4}{9}yx to get \frac{65}{36}xy.
\frac{2}{3}x^{2}+\frac{65}{36}xy+\frac{-9}{3\times 2}y^{2}
Multiply -\frac{1}{3} times \frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}x^{2}+\frac{65}{36}xy+\frac{-9}{6}y^{2}
Do the multiplications in the fraction \frac{-9}{3\times 2}.
\frac{2}{3}x^{2}+\frac{65}{36}xy-\frac{3}{2}y^{2}
Reduce the fraction \frac{-9}{6} to lowest terms by extracting and canceling out 3.
\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{3+1}{3}x+\frac{9}{2}y\right)
Multiply 1 and 3 to get 3.
\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{4}{3}x+\frac{9}{2}y\right)
Add 3 and 1 to get 4.
\frac{1}{2}x\times \frac{4}{3}x+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y\times \frac{9}{2}y
Apply the distributive property by multiplying each term of \frac{1}{2}x-\frac{1}{3}y by each term of \frac{4}{3}x+\frac{9}{2}y.
\frac{1}{2}x^{2}\times \frac{4}{3}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y\times \frac{9}{2}y
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}\times \frac{4}{3}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Multiply y and y to get y^{2}.
\frac{1\times 4}{2\times 3}x^{2}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Multiply \frac{1}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{6}x^{2}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Do the multiplications in the fraction \frac{1\times 4}{2\times 3}.
\frac{2}{3}x^{2}+\frac{1}{2}x\times \frac{9}{2}y-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x^{2}+\frac{1\times 9}{2\times 2}xy-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Multiply \frac{1}{2} times \frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}x^{2}+\frac{9}{4}xy-\frac{1}{3}y\times \frac{4}{3}x-\frac{1}{3}y^{2}\times \frac{9}{2}
Do the multiplications in the fraction \frac{1\times 9}{2\times 2}.
\frac{2}{3}x^{2}+\frac{9}{4}xy+\frac{-4}{3\times 3}yx-\frac{1}{3}y^{2}\times \frac{9}{2}
Multiply -\frac{1}{3} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}x^{2}+\frac{9}{4}xy+\frac{-4}{9}yx-\frac{1}{3}y^{2}\times \frac{9}{2}
Do the multiplications in the fraction \frac{-4}{3\times 3}.
\frac{2}{3}x^{2}+\frac{9}{4}xy-\frac{4}{9}yx-\frac{1}{3}y^{2}\times \frac{9}{2}
Fraction \frac{-4}{9} can be rewritten as -\frac{4}{9} by extracting the negative sign.
\frac{2}{3}x^{2}+\frac{65}{36}xy-\frac{1}{3}y^{2}\times \frac{9}{2}
Combine \frac{9}{4}xy and -\frac{4}{9}yx to get \frac{65}{36}xy.
\frac{2}{3}x^{2}+\frac{65}{36}xy+\frac{-9}{3\times 2}y^{2}
Multiply -\frac{1}{3} times \frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}x^{2}+\frac{65}{36}xy+\frac{-9}{6}y^{2}
Do the multiplications in the fraction \frac{-9}{3\times 2}.
\frac{2}{3}x^{2}+\frac{65}{36}xy-\frac{3}{2}y^{2}
Reduce the fraction \frac{-9}{6} to lowest terms by extracting and canceling out 3.