Solve for a
a=-\frac{\sqrt{2}y}{4}+\frac{x}{2}
Solve for x
x=\frac{\sqrt{2}y+4a}{2}
Graph
Share
Copied to clipboard
x\times 4=2\left(2\sqrt{2}a+y\right)\sqrt{2}
Cancel out \frac{1}{2} on both sides.
x\times 4=\left(4a\sqrt{2}+2y\right)\sqrt{2}
Use the distributive property to multiply 2 by 2\sqrt{2}a+y.
x\times 4=4a\left(\sqrt{2}\right)^{2}+2y\sqrt{2}
Use the distributive property to multiply 4a\sqrt{2}+2y by \sqrt{2}.
x\times 4=4a\times 2+2y\sqrt{2}
The square of \sqrt{2} is 2.
x\times 4=8a+2y\sqrt{2}
Multiply 4 and 2 to get 8.
8a+2y\sqrt{2}=x\times 4
Swap sides so that all variable terms are on the left hand side.
8a=x\times 4-2y\sqrt{2}
Subtract 2y\sqrt{2} from both sides.
8a=-2\sqrt{2}y+4x
The equation is in standard form.
\frac{8a}{8}=\frac{-2\sqrt{2}y+4x}{8}
Divide both sides by 8.
a=\frac{-2\sqrt{2}y+4x}{8}
Dividing by 8 undoes the multiplication by 8.
a=-\frac{\sqrt{2}y}{4}+\frac{x}{2}
Divide 4x-2\sqrt{2}y by 8.
x\times 4=2\left(2\sqrt{2}a+y\right)\sqrt{2}
Cancel out \frac{1}{2} on both sides.
x\times 4=\left(4\sqrt{2}a+2y\right)\sqrt{2}
Use the distributive property to multiply 2 by 2\sqrt{2}a+y.
x\times 4=4a\left(\sqrt{2}\right)^{2}+2y\sqrt{2}
Use the distributive property to multiply 4\sqrt{2}a+2y by \sqrt{2}.
x\times 4=4a\times 2+2y\sqrt{2}
The square of \sqrt{2} is 2.
x\times 4=8a+2y\sqrt{2}
Multiply 4 and 2 to get 8.
4x=2\sqrt{2}y+8a
The equation is in standard form.
\frac{4x}{4}=\frac{2\sqrt{2}y+8a}{4}
Divide both sides by 4.
x=\frac{2\sqrt{2}y+8a}{4}
Dividing by 4 undoes the multiplication by 4.
x=\frac{\sqrt{2}y}{2}+2a
Divide 8a+2y\sqrt{2} by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}