Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x\times 4x+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{1}{2}x+2 by each term of 4x-\frac{1}{2}.
\frac{1}{2}x^{2}\times 4+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{4}{2}x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Divide 4 by 2 to get 2.
2x^{2}+\frac{1\left(-1\right)}{2\times 2}x+8x+2\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2x^{2}+\frac{-1}{4}x+8x+2\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
2x^{2}-\frac{1}{4}x+8x+2\left(-\frac{1}{2}\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
2x^{2}+\frac{31}{4}x+2\left(-\frac{1}{2}\right)
Combine -\frac{1}{4}x and 8x to get \frac{31}{4}x.
2x^{2}+\frac{31}{4}x-1
Cancel out 2 and 2.
\frac{1}{2}x\times 4x+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{1}{2}x+2 by each term of 4x-\frac{1}{2}.
\frac{1}{2}x^{2}\times 4+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{4}{2}x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Divide 4 by 2 to get 2.
2x^{2}+\frac{1\left(-1\right)}{2\times 2}x+8x+2\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2x^{2}+\frac{-1}{4}x+8x+2\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
2x^{2}-\frac{1}{4}x+8x+2\left(-\frac{1}{2}\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
2x^{2}+\frac{31}{4}x+2\left(-\frac{1}{2}\right)
Combine -\frac{1}{4}x and 8x to get \frac{31}{4}x.
2x^{2}+\frac{31}{4}x-1
Cancel out 2 and 2.