Evaluate
\frac{\left(8x-1\right)\left(x+4\right)}{4}
Expand
2x^{2}+\frac{31x}{4}-1
Graph
Share
Copied to clipboard
\frac{1}{2}x\times 4x+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{1}{2}x+2 by each term of 4x-\frac{1}{2}.
\frac{1}{2}x^{2}\times 4+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{4}{2}x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Divide 4 by 2 to get 2.
2x^{2}+\frac{1\left(-1\right)}{2\times 2}x+8x+2\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2x^{2}+\frac{-1}{4}x+8x+2\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
2x^{2}-\frac{1}{4}x+8x+2\left(-\frac{1}{2}\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
2x^{2}+\frac{31}{4}x+2\left(-\frac{1}{2}\right)
Combine -\frac{1}{4}x and 8x to get \frac{31}{4}x.
2x^{2}+\frac{31}{4}x-1
Cancel out 2 and 2.
\frac{1}{2}x\times 4x+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{1}{2}x+2 by each term of 4x-\frac{1}{2}.
\frac{1}{2}x^{2}\times 4+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{4}{2}x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+8x+2\left(-\frac{1}{2}\right)
Divide 4 by 2 to get 2.
2x^{2}+\frac{1\left(-1\right)}{2\times 2}x+8x+2\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2x^{2}+\frac{-1}{4}x+8x+2\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
2x^{2}-\frac{1}{4}x+8x+2\left(-\frac{1}{2}\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
2x^{2}+\frac{31}{4}x+2\left(-\frac{1}{2}\right)
Combine -\frac{1}{4}x and 8x to get \frac{31}{4}x.
2x^{2}+\frac{31}{4}x-1
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}