( \frac { 1 } { 2 } x + \sqrt { \frac { 1 } { 9 } } - \frac { 2 } { 3 } \cdot \frac { 5 } { 4 } = \frac { 15 } { 3 } : \frac { 2 } { 5 } - \frac { 1 } { 6 } x + \frac { 1 } { 2 } )
Solve for x
x = \frac{81}{4} = 20\frac{1}{4} = 20.25
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{3}-\frac{2}{3}\times \frac{5}{4}=\frac{\frac{15}{3}}{\frac{2}{5}}-\frac{1}{6}x+\frac{1}{2}
Rewrite the square root of the division \frac{1}{9} as the division of square roots \frac{\sqrt{1}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{1}{2}x+\frac{1}{3}-\frac{2\times 5}{3\times 4}=\frac{\frac{15}{3}}{\frac{2}{5}}-\frac{1}{6}x+\frac{1}{2}
Multiply \frac{2}{3} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{1}{3}-\frac{10}{12}=\frac{\frac{15}{3}}{\frac{2}{5}}-\frac{1}{6}x+\frac{1}{2}
Do the multiplications in the fraction \frac{2\times 5}{3\times 4}.
\frac{1}{2}x+\frac{1}{3}-\frac{5}{6}=\frac{\frac{15}{3}}{\frac{2}{5}}-\frac{1}{6}x+\frac{1}{2}
Reduce the fraction \frac{10}{12} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x+\frac{2}{6}-\frac{5}{6}=\frac{\frac{15}{3}}{\frac{2}{5}}-\frac{1}{6}x+\frac{1}{2}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{1}{2}x+\frac{2-5}{6}=\frac{\frac{15}{3}}{\frac{2}{5}}-\frac{1}{6}x+\frac{1}{2}
Since \frac{2}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x+\frac{-3}{6}=\frac{\frac{15}{3}}{\frac{2}{5}}-\frac{1}{6}x+\frac{1}{2}
Subtract 5 from 2 to get -3.
\frac{1}{2}x-\frac{1}{2}=\frac{\frac{15}{3}}{\frac{2}{5}}-\frac{1}{6}x+\frac{1}{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{2}x-\frac{1}{2}=\frac{5}{\frac{2}{5}}-\frac{1}{6}x+\frac{1}{2}
Divide 15 by 3 to get 5.
\frac{1}{2}x-\frac{1}{2}=5\times \frac{5}{2}-\frac{1}{6}x+\frac{1}{2}
Divide 5 by \frac{2}{5} by multiplying 5 by the reciprocal of \frac{2}{5}.
\frac{1}{2}x-\frac{1}{2}=\frac{5\times 5}{2}-\frac{1}{6}x+\frac{1}{2}
Express 5\times \frac{5}{2} as a single fraction.
\frac{1}{2}x-\frac{1}{2}=\frac{25}{2}-\frac{1}{6}x+\frac{1}{2}
Multiply 5 and 5 to get 25.
\frac{1}{2}x-\frac{1}{2}=\frac{25+1}{2}-\frac{1}{6}x
Since \frac{25}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}x-\frac{1}{2}=\frac{26}{2}-\frac{1}{6}x
Add 25 and 1 to get 26.
\frac{1}{2}x-\frac{1}{2}=13-\frac{1}{6}x
Divide 26 by 2 to get 13.
\frac{1}{2}x-\frac{1}{2}+\frac{1}{6}x=13
Add \frac{1}{6}x to both sides.
\frac{2}{3}x-\frac{1}{2}=13
Combine \frac{1}{2}x and \frac{1}{6}x to get \frac{2}{3}x.
\frac{2}{3}x=13+\frac{1}{2}
Add \frac{1}{2} to both sides.
\frac{2}{3}x=\frac{26}{2}+\frac{1}{2}
Convert 13 to fraction \frac{26}{2}.
\frac{2}{3}x=\frac{26+1}{2}
Since \frac{26}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{2}{3}x=\frac{27}{2}
Add 26 and 1 to get 27.
x=\frac{27}{2}\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}.
x=\frac{27\times 3}{2\times 2}
Multiply \frac{27}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{81}{4}
Do the multiplications in the fraction \frac{27\times 3}{2\times 2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}