Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{2}x\right)^{2}-\left(\frac{7}{3}y^{2}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}\right)^{2}x^{2}-\left(\frac{7}{3}y^{2}\right)^{2}
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-\left(\frac{7}{3}y^{2}\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}-\left(\frac{7}{3}\right)^{2}\left(y^{2}\right)^{2}
Expand \left(\frac{7}{3}y^{2}\right)^{2}.
\frac{1}{4}x^{2}-\left(\frac{7}{3}\right)^{2}y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{4}x^{2}-\frac{49}{9}y^{4}
Calculate \frac{7}{3} to the power of 2 and get \frac{49}{9}.
\left(\frac{1}{2}x\right)^{2}-\left(\frac{7}{3}y^{2}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}\right)^{2}x^{2}-\left(\frac{7}{3}y^{2}\right)^{2}
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-\left(\frac{7}{3}y^{2}\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}-\left(\frac{7}{3}\right)^{2}\left(y^{2}\right)^{2}
Expand \left(\frac{7}{3}y^{2}\right)^{2}.
\frac{1}{4}x^{2}-\left(\frac{7}{3}\right)^{2}y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{4}x^{2}-\frac{49}{9}y^{4}
Calculate \frac{7}{3} to the power of 2 and get \frac{49}{9}.