Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{8}\left(a^{2}\right)^{3}-\frac{9}{8}\left(a^{2}\right)^{2}a+\frac{27}{8}a^{2}a^{2}-\frac{27}{8}a^{3}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(\frac{1}{2}a^{2}-\frac{3}{2}a\right)^{3}.
\frac{1}{8}a^{6}-\frac{9}{8}\left(a^{2}\right)^{2}a+\frac{27}{8}a^{2}a^{2}-\frac{27}{8}a^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{1}{8}a^{6}-\frac{9}{8}a^{4}a+\frac{27}{8}a^{2}a^{2}-\frac{27}{8}a^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{8}a^{6}-\frac{9}{8}a^{5}+\frac{27}{8}a^{2}a^{2}-\frac{27}{8}a^{3}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{1}{8}a^{6}-\frac{9}{8}a^{5}+\frac{27}{8}a^{4}-\frac{27}{8}a^{3}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{1}{8}\left(a^{2}\right)^{3}-\frac{9}{8}\left(a^{2}\right)^{2}a+\frac{27}{8}a^{2}a^{2}-\frac{27}{8}a^{3}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(\frac{1}{2}a^{2}-\frac{3}{2}a\right)^{3}.
\frac{1}{8}a^{6}-\frac{9}{8}\left(a^{2}\right)^{2}a+\frac{27}{8}a^{2}a^{2}-\frac{27}{8}a^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{1}{8}a^{6}-\frac{9}{8}a^{4}a+\frac{27}{8}a^{2}a^{2}-\frac{27}{8}a^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{8}a^{6}-\frac{9}{8}a^{5}+\frac{27}{8}a^{2}a^{2}-\frac{27}{8}a^{3}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{1}{8}a^{6}-\frac{9}{8}a^{5}+\frac{27}{8}a^{4}-\frac{27}{8}a^{3}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.