Evaluate
\frac{\left(a-6\right)\left(a+6b\right)}{4}
Expand
\frac{3ab}{2}+\frac{a^{2}}{4}-\frac{3a}{2}-9b
Share
Copied to clipboard
\frac{1}{2}a\times \frac{1}{2}a+\frac{1}{2}a\left(-3\right)+3b\times \frac{1}{2}a-9b
Apply the distributive property by multiplying each term of \frac{1}{2}a+3b by each term of \frac{1}{2}a-3.
\frac{1}{2}a^{2}\times \frac{1}{2}+\frac{1}{2}a\left(-3\right)+3b\times \frac{1}{2}a-9b
Multiply a and a to get a^{2}.
\frac{1\times 1}{2\times 2}a^{2}+\frac{1}{2}a\left(-3\right)+3b\times \frac{1}{2}a-9b
Multiply \frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}a^{2}+\frac{1}{2}a\left(-3\right)+3b\times \frac{1}{2}a-9b
Do the multiplications in the fraction \frac{1\times 1}{2\times 2}.
\frac{1}{4}a^{2}+\frac{-3}{2}a+3b\times \frac{1}{2}a-9b
Multiply \frac{1}{2} and -3 to get \frac{-3}{2}.
\frac{1}{4}a^{2}-\frac{3}{2}a+3b\times \frac{1}{2}a-9b
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{1}{4}a^{2}-\frac{3}{2}a+\frac{3}{2}ba-9b
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{1}{2}a\times \frac{1}{2}a+\frac{1}{2}a\left(-3\right)+3b\times \frac{1}{2}a-9b
Apply the distributive property by multiplying each term of \frac{1}{2}a+3b by each term of \frac{1}{2}a-3.
\frac{1}{2}a^{2}\times \frac{1}{2}+\frac{1}{2}a\left(-3\right)+3b\times \frac{1}{2}a-9b
Multiply a and a to get a^{2}.
\frac{1\times 1}{2\times 2}a^{2}+\frac{1}{2}a\left(-3\right)+3b\times \frac{1}{2}a-9b
Multiply \frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}a^{2}+\frac{1}{2}a\left(-3\right)+3b\times \frac{1}{2}a-9b
Do the multiplications in the fraction \frac{1\times 1}{2\times 2}.
\frac{1}{4}a^{2}+\frac{-3}{2}a+3b\times \frac{1}{2}a-9b
Multiply \frac{1}{2} and -3 to get \frac{-3}{2}.
\frac{1}{4}a^{2}-\frac{3}{2}a+3b\times \frac{1}{2}a-9b
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{1}{4}a^{2}-\frac{3}{2}a+\frac{3}{2}ba-9b
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}