Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}a\times \frac{3}{2}a+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b\left(-\frac{2}{3}\right)b
Apply the distributive property by multiplying each term of \frac{1}{2}a+\frac{1}{3}b by each term of \frac{3}{2}a-\frac{2}{3}b.
\frac{1}{2}a^{2}\times \frac{3}{2}+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b\left(-\frac{2}{3}\right)b
Multiply a and a to get a^{2}.
\frac{1}{2}a^{2}\times \frac{3}{2}+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply b and b to get b^{2}.
\frac{1\times 3}{2\times 2}a^{2}+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\frac{3}{4}a^{2}+\frac{1\left(-2\right)}{2\times 3}ab+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply \frac{1}{2} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{-2}{6}ab+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Do the multiplications in the fraction \frac{1\left(-2\right)}{2\times 3}.
\frac{3}{4}a^{2}-\frac{1}{3}ab+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{4}a^{2}-\frac{1}{3}ab+\frac{1\times 3}{3\times 2}ba+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply \frac{1}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}-\frac{1}{3}ab+\frac{1}{2}ba+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Cancel out 3 in both numerator and denominator.
\frac{3}{4}a^{2}+\frac{1}{6}ab+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Combine -\frac{1}{3}ab and \frac{1}{2}ba to get \frac{1}{6}ab.
\frac{3}{4}a^{2}+\frac{1}{6}ab+\frac{1\left(-2\right)}{3\times 3}b^{2}
Multiply \frac{1}{3} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{1}{6}ab+\frac{-2}{9}b^{2}
Do the multiplications in the fraction \frac{1\left(-2\right)}{3\times 3}.
\frac{3}{4}a^{2}+\frac{1}{6}ab-\frac{2}{9}b^{2}
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.
\frac{1}{2}a\times \frac{3}{2}a+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b\left(-\frac{2}{3}\right)b
Apply the distributive property by multiplying each term of \frac{1}{2}a+\frac{1}{3}b by each term of \frac{3}{2}a-\frac{2}{3}b.
\frac{1}{2}a^{2}\times \frac{3}{2}+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b\left(-\frac{2}{3}\right)b
Multiply a and a to get a^{2}.
\frac{1}{2}a^{2}\times \frac{3}{2}+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply b and b to get b^{2}.
\frac{1\times 3}{2\times 2}a^{2}+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{1}{2}a\left(-\frac{2}{3}\right)b+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\frac{3}{4}a^{2}+\frac{1\left(-2\right)}{2\times 3}ab+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply \frac{1}{2} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{-2}{6}ab+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Do the multiplications in the fraction \frac{1\left(-2\right)}{2\times 3}.
\frac{3}{4}a^{2}-\frac{1}{3}ab+\frac{1}{3}b\times \frac{3}{2}a+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{4}a^{2}-\frac{1}{3}ab+\frac{1\times 3}{3\times 2}ba+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply \frac{1}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}-\frac{1}{3}ab+\frac{1}{2}ba+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Cancel out 3 in both numerator and denominator.
\frac{3}{4}a^{2}+\frac{1}{6}ab+\frac{1}{3}b^{2}\left(-\frac{2}{3}\right)
Combine -\frac{1}{3}ab and \frac{1}{2}ba to get \frac{1}{6}ab.
\frac{3}{4}a^{2}+\frac{1}{6}ab+\frac{1\left(-2\right)}{3\times 3}b^{2}
Multiply \frac{1}{3} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{1}{6}ab+\frac{-2}{9}b^{2}
Do the multiplications in the fraction \frac{1\left(-2\right)}{3\times 3}.
\frac{3}{4}a^{2}+\frac{1}{6}ab-\frac{2}{9}b^{2}
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.