Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(1-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Use the distributive property to multiply \frac{1}{2}-x by x.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(\frac{5}{5}-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Convert 1 to fraction \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{5-1}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{4}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Subtract 1 from 5 to get 4.
\frac{1}{2}x-x^{2}=\frac{\frac{2\times 4}{7\times 5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Multiply \frac{2}{7} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Do the multiplications in the fraction \frac{2\times 4}{7\times 5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5}{5}-\frac{3}{5}}{1+\frac{2}{5}}}
Convert 1 to fraction \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5-3}{5}}{1+\frac{2}{5}}}
Since \frac{5}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{1+\frac{2}{5}}}
Subtract 3 from 5 to get 2.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5}{5}+\frac{2}{5}}}
Convert 1 to fraction \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5+2}{5}}}
Since \frac{5}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{7}{5}}}
Add 5 and 2 to get 7.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{5}\times \frac{5}{7}}
Divide \frac{2}{5} by \frac{7}{5} by multiplying \frac{2}{5} by the reciprocal of \frac{7}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2\times 5}{5\times 7}}
Multiply \frac{2}{5} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{7}}
Cancel out 5 in both numerator and denominator.
\frac{1}{2}x-x^{2}=\frac{8}{35}\times \frac{7}{2}
Divide \frac{8}{35} by \frac{2}{7} by multiplying \frac{8}{35} by the reciprocal of \frac{2}{7}.
\frac{1}{2}x-x^{2}=\frac{8\times 7}{35\times 2}
Multiply \frac{8}{35} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x-x^{2}=\frac{56}{70}
Do the multiplications in the fraction \frac{8\times 7}{35\times 2}.
\frac{1}{2}x-x^{2}=\frac{4}{5}
Reduce the fraction \frac{56}{70} to lowest terms by extracting and canceling out 14.
\frac{1}{2}x-x^{2}-\frac{4}{5}=0
Subtract \frac{4}{5} from both sides.
-x^{2}+\frac{1}{2}x-\frac{4}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{1}{2} for b, and -\frac{4}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-\frac{16}{5}}}{2\left(-1\right)}
Multiply 4 times -\frac{4}{5}.
x=\frac{-\frac{1}{2}±\sqrt{-\frac{59}{20}}}{2\left(-1\right)}
Add \frac{1}{4} to -\frac{16}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{2\left(-1\right)}
Take the square root of -\frac{59}{20}.
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2}
Multiply 2 times -1.
x=\frac{\frac{\sqrt{295}i}{10}-\frac{1}{2}}{-2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2} when ± is plus. Add -\frac{1}{2} to \frac{i\sqrt{295}}{10}.
x=-\frac{\sqrt{295}i}{20}+\frac{1}{4}
Divide -\frac{1}{2}+\frac{i\sqrt{295}}{10} by -2.
x=\frac{-\frac{\sqrt{295}i}{10}-\frac{1}{2}}{-2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2} when ± is minus. Subtract \frac{i\sqrt{295}}{10} from -\frac{1}{2}.
x=\frac{\sqrt{295}i}{20}+\frac{1}{4}
Divide -\frac{1}{2}-\frac{i\sqrt{295}}{10} by -2.
x=-\frac{\sqrt{295}i}{20}+\frac{1}{4} x=\frac{\sqrt{295}i}{20}+\frac{1}{4}
The equation is now solved.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(1-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Use the distributive property to multiply \frac{1}{2}-x by x.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(\frac{5}{5}-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Convert 1 to fraction \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{5-1}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{4}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Subtract 1 from 5 to get 4.
\frac{1}{2}x-x^{2}=\frac{\frac{2\times 4}{7\times 5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Multiply \frac{2}{7} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Do the multiplications in the fraction \frac{2\times 4}{7\times 5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5}{5}-\frac{3}{5}}{1+\frac{2}{5}}}
Convert 1 to fraction \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5-3}{5}}{1+\frac{2}{5}}}
Since \frac{5}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{1+\frac{2}{5}}}
Subtract 3 from 5 to get 2.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5}{5}+\frac{2}{5}}}
Convert 1 to fraction \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5+2}{5}}}
Since \frac{5}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{7}{5}}}
Add 5 and 2 to get 7.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{5}\times \frac{5}{7}}
Divide \frac{2}{5} by \frac{7}{5} by multiplying \frac{2}{5} by the reciprocal of \frac{7}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2\times 5}{5\times 7}}
Multiply \frac{2}{5} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{7}}
Cancel out 5 in both numerator and denominator.
\frac{1}{2}x-x^{2}=\frac{8}{35}\times \frac{7}{2}
Divide \frac{8}{35} by \frac{2}{7} by multiplying \frac{8}{35} by the reciprocal of \frac{2}{7}.
\frac{1}{2}x-x^{2}=\frac{8\times 7}{35\times 2}
Multiply \frac{8}{35} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x-x^{2}=\frac{56}{70}
Do the multiplications in the fraction \frac{8\times 7}{35\times 2}.
\frac{1}{2}x-x^{2}=\frac{4}{5}
Reduce the fraction \frac{56}{70} to lowest terms by extracting and canceling out 14.
-x^{2}+\frac{1}{2}x=\frac{4}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+\frac{1}{2}x}{-1}=\frac{\frac{4}{5}}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{1}{2}}{-1}x=\frac{\frac{4}{5}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{1}{2}x=\frac{\frac{4}{5}}{-1}
Divide \frac{1}{2} by -1.
x^{2}-\frac{1}{2}x=-\frac{4}{5}
Divide \frac{4}{5} by -1.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{4}{5}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{4}{5}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{59}{80}
Add -\frac{4}{5} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{59}{80}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{59}{80}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{295}i}{20} x-\frac{1}{4}=-\frac{\sqrt{295}i}{20}
Simplify.
x=\frac{\sqrt{295}i}{20}+\frac{1}{4} x=-\frac{\sqrt{295}i}{20}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.