Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(\frac{1}{2}-x\right)^{2}-3\left(x+1\right)^{2}<-3\left(1-\frac{2x+1}{6}\right)+1+2
Multiply both sides of the equation by 3. Since 3 is positive, the inequality direction remains the same.
3\left(\frac{1}{4}-x+x^{2}\right)-3\left(x+1\right)^{2}<-3\left(1-\frac{2x+1}{6}\right)+1+2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}-x\right)^{2}.
\frac{3}{4}-3x+3x^{2}-3\left(x+1\right)^{2}<-3\left(1-\frac{2x+1}{6}\right)+1+2
Use the distributive property to multiply 3 by \frac{1}{4}-x+x^{2}.
\frac{3}{4}-3x+3x^{2}-3\left(x^{2}+2x+1\right)<-3\left(1-\frac{2x+1}{6}\right)+1+2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{3}{4}-3x+3x^{2}-3x^{2}-6x-3<-3\left(1-\frac{2x+1}{6}\right)+1+2
Use the distributive property to multiply -3 by x^{2}+2x+1.
\frac{3}{4}-3x-6x-3<-3\left(1-\frac{2x+1}{6}\right)+1+2
Combine 3x^{2} and -3x^{2} to get 0.
\frac{3}{4}-9x-3<-3\left(1-\frac{2x+1}{6}\right)+1+2
Combine -3x and -6x to get -9x.
-\frac{9}{4}-9x<-3\left(1-\frac{2x+1}{6}\right)+1+2
Subtract 3 from \frac{3}{4} to get -\frac{9}{4}.
-\frac{9}{4}-9x<-3-3\left(-\frac{2x+1}{6}\right)+1+2
Use the distributive property to multiply -3 by 1-\frac{2x+1}{6}.
-\frac{9}{4}-9x<-3+3\times \frac{2x+1}{6}+1+2
Multiply -3 and -1 to get 3.
-\frac{9}{4}-9x<-3+\frac{2x+1}{2}+1+2
Cancel out 6, the greatest common factor in 3 and 6.
-\frac{9}{4}-9x<-2+\frac{2x+1}{2}+2
Add -3 and 1 to get -2.
-\frac{9}{4}-9x<\frac{2x+1}{2}
Add -2 and 2 to get 0.
-\frac{9}{4}-9x<x+\frac{1}{2}
Divide each term of 2x+1 by 2 to get x+\frac{1}{2}.
-\frac{9}{4}-9x-x<\frac{1}{2}
Subtract x from both sides.
-\frac{9}{4}-10x<\frac{1}{2}
Combine -9x and -x to get -10x.
-10x<\frac{1}{2}+\frac{9}{4}
Add \frac{9}{4} to both sides.
-10x<\frac{11}{4}
Add \frac{1}{2} and \frac{9}{4} to get \frac{11}{4}.
x>\frac{\frac{11}{4}}{-10}
Divide both sides by -10. Since -10 is negative, the inequality direction is changed.
x>\frac{11}{4\left(-10\right)}
Express \frac{\frac{11}{4}}{-10} as a single fraction.
x>\frac{11}{-40}
Multiply 4 and -10 to get -40.
x>-\frac{11}{40}
Fraction \frac{11}{-40} can be rewritten as -\frac{11}{40} by extracting the negative sign.