Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}-v+v^{2}-\left(\frac{1}{2}-v\right)\left(\frac{1}{2}+v\right)+\left(v+\frac{1}{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}-v\right)^{2}.
\frac{1}{4}-v+v^{2}-\left(\frac{1}{4}-v^{2}\right)+\left(v+\frac{1}{2}\right)^{2}
Consider \left(\frac{1}{2}-v\right)\left(\frac{1}{2}+v\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
\frac{1}{4}-v+v^{2}-\frac{1}{4}+v^{2}+\left(v+\frac{1}{2}\right)^{2}
To find the opposite of \frac{1}{4}-v^{2}, find the opposite of each term.
-v+v^{2}+v^{2}+\left(v+\frac{1}{2}\right)^{2}
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
-v+2v^{2}+\left(v+\frac{1}{2}\right)^{2}
Combine v^{2} and v^{2} to get 2v^{2}.
-v+2v^{2}+v^{2}+v+\frac{1}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(v+\frac{1}{2}\right)^{2}.
-v+3v^{2}+v+\frac{1}{4}
Combine 2v^{2} and v^{2} to get 3v^{2}.
3v^{2}+\frac{1}{4}
Combine -v and v to get 0.
\frac{1}{4}-v+v^{2}-\left(\frac{1}{2}-v\right)\left(\frac{1}{2}+v\right)+\left(v+\frac{1}{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}-v\right)^{2}.
\frac{1}{4}-v+v^{2}-\left(\frac{1}{4}-v^{2}\right)+\left(v+\frac{1}{2}\right)^{2}
Consider \left(\frac{1}{2}-v\right)\left(\frac{1}{2}+v\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
\frac{1}{4}-v+v^{2}-\frac{1}{4}+v^{2}+\left(v+\frac{1}{2}\right)^{2}
To find the opposite of \frac{1}{4}-v^{2}, find the opposite of each term.
-v+v^{2}+v^{2}+\left(v+\frac{1}{2}\right)^{2}
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
-v+2v^{2}+\left(v+\frac{1}{2}\right)^{2}
Combine v^{2} and v^{2} to get 2v^{2}.
-v+2v^{2}+v^{2}+v+\frac{1}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(v+\frac{1}{2}\right)^{2}.
-v+3v^{2}+v+\frac{1}{4}
Combine 2v^{2} and v^{2} to get 3v^{2}.
3v^{2}+\frac{1}{4}
Combine -v and v to get 0.