Evaluate
3v^{2}+\frac{1}{4}
Expand
3v^{2}+\frac{1}{4}
Share
Copied to clipboard
\frac{1}{4}-v+v^{2}-\left(\frac{1}{2}-v\right)\left(\frac{1}{2}+v\right)+\left(v+\frac{1}{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}-v\right)^{2}.
\frac{1}{4}-v+v^{2}-\left(\frac{1}{4}-v^{2}\right)+\left(v+\frac{1}{2}\right)^{2}
Consider \left(\frac{1}{2}-v\right)\left(\frac{1}{2}+v\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
\frac{1}{4}-v+v^{2}-\frac{1}{4}+v^{2}+\left(v+\frac{1}{2}\right)^{2}
To find the opposite of \frac{1}{4}-v^{2}, find the opposite of each term.
-v+v^{2}+v^{2}+\left(v+\frac{1}{2}\right)^{2}
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
-v+2v^{2}+\left(v+\frac{1}{2}\right)^{2}
Combine v^{2} and v^{2} to get 2v^{2}.
-v+2v^{2}+v^{2}+v+\frac{1}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(v+\frac{1}{2}\right)^{2}.
-v+3v^{2}+v+\frac{1}{4}
Combine 2v^{2} and v^{2} to get 3v^{2}.
3v^{2}+\frac{1}{4}
Combine -v and v to get 0.
\frac{1}{4}-v+v^{2}-\left(\frac{1}{2}-v\right)\left(\frac{1}{2}+v\right)+\left(v+\frac{1}{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}-v\right)^{2}.
\frac{1}{4}-v+v^{2}-\left(\frac{1}{4}-v^{2}\right)+\left(v+\frac{1}{2}\right)^{2}
Consider \left(\frac{1}{2}-v\right)\left(\frac{1}{2}+v\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
\frac{1}{4}-v+v^{2}-\frac{1}{4}+v^{2}+\left(v+\frac{1}{2}\right)^{2}
To find the opposite of \frac{1}{4}-v^{2}, find the opposite of each term.
-v+v^{2}+v^{2}+\left(v+\frac{1}{2}\right)^{2}
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
-v+2v^{2}+\left(v+\frac{1}{2}\right)^{2}
Combine v^{2} and v^{2} to get 2v^{2}.
-v+2v^{2}+v^{2}+v+\frac{1}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(v+\frac{1}{2}\right)^{2}.
-v+3v^{2}+v+\frac{1}{4}
Combine 2v^{2} and v^{2} to get 3v^{2}.
3v^{2}+\frac{1}{4}
Combine -v and v to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}