Skip to main content
Solve for h
Tick mark Image
Solve for K (complex solution)
Tick mark Image
Solve for K
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}-h+h^{2}+\left(2-k\right)^{2}-\left(1+h\right)^{2}-\left(1+K\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}-h\right)^{2}.
\frac{1}{4}-h+h^{2}+4-4k+k^{2}-\left(1+h\right)^{2}-\left(1+K\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-k\right)^{2}.
\frac{17}{4}-h+h^{2}-4k+k^{2}-\left(1+h\right)^{2}-\left(1+K\right)^{2}=0
Add \frac{1}{4} and 4 to get \frac{17}{4}.
\frac{17}{4}-h+h^{2}-4k+k^{2}-\left(1+2h+h^{2}\right)-\left(1+K\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+h\right)^{2}.
\frac{17}{4}-h+h^{2}-4k+k^{2}-1-2h-h^{2}-\left(1+K\right)^{2}=0
To find the opposite of 1+2h+h^{2}, find the opposite of each term.
\frac{13}{4}-h+h^{2}-4k+k^{2}-2h-h^{2}-\left(1+K\right)^{2}=0
Subtract 1 from \frac{17}{4} to get \frac{13}{4}.
\frac{13}{4}-3h+h^{2}-4k+k^{2}-h^{2}-\left(1+K\right)^{2}=0
Combine -h and -2h to get -3h.
\frac{13}{4}-3h-4k+k^{2}-\left(1+K\right)^{2}=0
Combine h^{2} and -h^{2} to get 0.
\frac{13}{4}-3h-4k+k^{2}-\left(1+2K+K^{2}\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+K\right)^{2}.
\frac{13}{4}-3h-4k+k^{2}-1-2K-K^{2}=0
To find the opposite of 1+2K+K^{2}, find the opposite of each term.
\frac{9}{4}-3h-4k+k^{2}-2K-K^{2}=0
Subtract 1 from \frac{13}{4} to get \frac{9}{4}.
-3h-4k+k^{2}-2K-K^{2}=-\frac{9}{4}
Subtract \frac{9}{4} from both sides. Anything subtracted from zero gives its negation.
-3h+k^{2}-2K-K^{2}=-\frac{9}{4}+4k
Add 4k to both sides.
-3h-2K-K^{2}=-\frac{9}{4}+4k-k^{2}
Subtract k^{2} from both sides.
-3h-K^{2}=-\frac{9}{4}+4k-k^{2}+2K
Add 2K to both sides.
-3h=-\frac{9}{4}+4k-k^{2}+2K+K^{2}
Add K^{2} to both sides.
-3h=K^{2}+2K-k^{2}+4k-\frac{9}{4}
The equation is in standard form.
\frac{-3h}{-3}=\frac{K^{2}+2K-k^{2}+4k-\frac{9}{4}}{-3}
Divide both sides by -3.
h=\frac{K^{2}+2K-k^{2}+4k-\frac{9}{4}}{-3}
Dividing by -3 undoes the multiplication by -3.
h=\frac{k^{2}}{3}-\frac{K^{2}}{3}-\frac{2K}{3}-\frac{4k}{3}+\frac{3}{4}
Divide -\frac{9}{4}+4k-k^{2}+2K+K^{2} by -3.