Evaluate
-\frac{4}{3}\approx -1.333333333
Factor
-\frac{4}{3} = -1\frac{1}{3} = -1.3333333333333333
Share
Copied to clipboard
\frac{\frac{2}{4}-\frac{3}{4}-\frac{1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{\frac{2-3}{4}-\frac{1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{4}-\frac{1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Subtract 3 from 2 to get -1.
\frac{-\frac{3}{12}-\frac{1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Least common multiple of 4 and 12 is 12. Convert -\frac{1}{4} and \frac{1}{12} to fractions with denominator 12.
\frac{\frac{-3-1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Since -\frac{3}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-4}{12}}{\left(-\frac{1}{2}\right)^{2}}
Subtract 1 from -3 to get -4.
\frac{-\frac{1}{3}}{\left(-\frac{1}{2}\right)^{2}}
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
\frac{-\frac{1}{3}}{\frac{1}{4}}
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
-\frac{1}{3}\times 4
Divide -\frac{1}{3} by \frac{1}{4} by multiplying -\frac{1}{3} by the reciprocal of \frac{1}{4}.
\frac{-4}{3}
Express -\frac{1}{3}\times 4 as a single fraction.
-\frac{4}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}