Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}\times 4r^{2}=675
Cancel out \pi on both sides.
2r^{2}=675
Multiply \frac{1}{2} and 4 to get 2.
r^{2}=\frac{675}{2}
Divide both sides by 2.
r=\frac{15\sqrt{6}}{2} r=-\frac{15\sqrt{6}}{2}
Take the square root of both sides of the equation.
\frac{1}{2}\times 4r^{2}=675
Cancel out \pi on both sides.
2r^{2}=675
Multiply \frac{1}{2} and 4 to get 2.
2r^{2}-675=0
Subtract 675 from both sides.
r=\frac{0±\sqrt{0^{2}-4\times 2\left(-675\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -675 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 2\left(-675\right)}}{2\times 2}
Square 0.
r=\frac{0±\sqrt{-8\left(-675\right)}}{2\times 2}
Multiply -4 times 2.
r=\frac{0±\sqrt{5400}}{2\times 2}
Multiply -8 times -675.
r=\frac{0±30\sqrt{6}}{2\times 2}
Take the square root of 5400.
r=\frac{0±30\sqrt{6}}{4}
Multiply 2 times 2.
r=\frac{15\sqrt{6}}{2}
Now solve the equation r=\frac{0±30\sqrt{6}}{4} when ± is plus.
r=-\frac{15\sqrt{6}}{2}
Now solve the equation r=\frac{0±30\sqrt{6}}{4} when ± is minus.
r=\frac{15\sqrt{6}}{2} r=-\frac{15\sqrt{6}}{2}
The equation is now solved.