Evaluate
\frac{403}{4}=100.75
Factor
\frac{13 \cdot 31}{2 ^ {2}} = 100\frac{3}{4} = 100.75
Share
Copied to clipboard
\frac{1}{4}-4\times \left(\frac{1}{2}\right)^{2}-3\left(-\frac{1}{2}\right)+10^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}-4\times \frac{1}{4}-3\left(-\frac{1}{2}\right)+10^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}-1-3\left(-\frac{1}{2}\right)+10^{2}
Cancel out 4 and 4.
\frac{1}{4}-\frac{4}{4}-3\left(-\frac{1}{2}\right)+10^{2}
Convert 1 to fraction \frac{4}{4}.
\frac{1-4}{4}-3\left(-\frac{1}{2}\right)+10^{2}
Since \frac{1}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{4}-3\left(-\frac{1}{2}\right)+10^{2}
Subtract 4 from 1 to get -3.
-\frac{3}{4}-\frac{3\left(-1\right)}{2}+10^{2}
Express 3\left(-\frac{1}{2}\right) as a single fraction.
-\frac{3}{4}-\frac{-3}{2}+10^{2}
Multiply 3 and -1 to get -3.
-\frac{3}{4}-\left(-\frac{3}{2}\right)+10^{2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
-\frac{3}{4}+\frac{3}{2}+10^{2}
The opposite of -\frac{3}{2} is \frac{3}{2}.
-\frac{3}{4}+\frac{6}{4}+10^{2}
Least common multiple of 4 and 2 is 4. Convert -\frac{3}{4} and \frac{3}{2} to fractions with denominator 4.
\frac{-3+6}{4}+10^{2}
Since -\frac{3}{4} and \frac{6}{4} have the same denominator, add them by adding their numerators.
\frac{3}{4}+10^{2}
Add -3 and 6 to get 3.
\frac{3}{4}+100
Calculate 10 to the power of 2 and get 100.
\frac{3}{4}+\frac{400}{4}
Convert 100 to fraction \frac{400}{4}.
\frac{3+400}{4}
Since \frac{3}{4} and \frac{400}{4} have the same denominator, add them by adding their numerators.
\frac{403}{4}
Add 3 and 400 to get 403.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}