Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{2}\right)^{3}=\left(\frac{1}{8}\right)^{6}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{2}\right)^{6}=\left(\frac{1}{8}\right)^{6}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{1}{64}=\left(\frac{1}{8}\right)^{6}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
Calculate \frac{1}{2} to the power of 6 and get \frac{1}{64}.
\frac{1}{64}=\frac{1}{262144}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
Calculate \frac{1}{8} to the power of 6 and get \frac{1}{262144}.
\frac{4096}{262144}=\frac{1}{262144}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
Least common multiple of 64 and 262144 is 262144. Convert \frac{1}{64} and \frac{1}{262144} to fractions with denominator 262144.
\text{false}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
Compare \frac{4096}{262144} and \frac{1}{262144}.
\text{false}\text{ and }\frac{1}{262144}=\frac{1}{262144}
Calculate \frac{1}{8} to the power of 6 and get \frac{1}{262144}.
\text{false}\text{ and }\text{true}
Compare \frac{1}{262144} and \frac{1}{262144}.
\text{false}
The conjunction of \text{false} and \text{true} is \text{false}.