Verify
false
Share
Copied to clipboard
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{2}\right)^{3}=\left(\frac{1}{8}\right)^{6}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{2}\right)^{6}=\left(\frac{1}{8}\right)^{6}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{1}{64}=\left(\frac{1}{8}\right)^{6}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
Calculate \frac{1}{2} to the power of 6 and get \frac{1}{64}.
\frac{1}{64}=\frac{1}{262144}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
Calculate \frac{1}{8} to the power of 6 and get \frac{1}{262144}.
\frac{4096}{262144}=\frac{1}{262144}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
Least common multiple of 64 and 262144 is 262144. Convert \frac{1}{64} and \frac{1}{262144} to fractions with denominator 262144.
\text{false}\text{ and }\left(\frac{1}{8}\right)^{6}=\frac{1}{262144}
Compare \frac{4096}{262144} and \frac{1}{262144}.
\text{false}\text{ and }\frac{1}{262144}=\frac{1}{262144}
Calculate \frac{1}{8} to the power of 6 and get \frac{1}{262144}.
\text{false}\text{ and }\text{true}
Compare \frac{1}{262144} and \frac{1}{262144}.
\text{false}
The conjunction of \text{false} and \text{true} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}