Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}\times 9=12
Multiply x and x to get x^{2}.
\frac{9}{2}x^{2}=12
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
x^{2}=12\times \frac{2}{9}
Multiply both sides by \frac{2}{9}, the reciprocal of \frac{9}{2}.
x^{2}=\frac{12\times 2}{9}
Express 12\times \frac{2}{9} as a single fraction.
x^{2}=\frac{24}{9}
Multiply 12 and 2 to get 24.
x^{2}=\frac{8}{3}
Reduce the fraction \frac{24}{9} to lowest terms by extracting and canceling out 3.
x=\frac{2\sqrt{6}}{3} x=-\frac{2\sqrt{6}}{3}
Take the square root of both sides of the equation.
\frac{1}{2}x^{2}\times 9=12
Multiply x and x to get x^{2}.
\frac{9}{2}x^{2}=12
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
\frac{9}{2}x^{2}-12=0
Subtract 12 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{9}{2}\left(-12\right)}}{2\times \frac{9}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{9}{2} for a, 0 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{9}{2}\left(-12\right)}}{2\times \frac{9}{2}}
Square 0.
x=\frac{0±\sqrt{-18\left(-12\right)}}{2\times \frac{9}{2}}
Multiply -4 times \frac{9}{2}.
x=\frac{0±\sqrt{216}}{2\times \frac{9}{2}}
Multiply -18 times -12.
x=\frac{0±6\sqrt{6}}{2\times \frac{9}{2}}
Take the square root of 216.
x=\frac{0±6\sqrt{6}}{9}
Multiply 2 times \frac{9}{2}.
x=\frac{2\sqrt{6}}{3}
Now solve the equation x=\frac{0±6\sqrt{6}}{9} when ± is plus.
x=-\frac{2\sqrt{6}}{3}
Now solve the equation x=\frac{0±6\sqrt{6}}{9} when ± is minus.
x=\frac{2\sqrt{6}}{3} x=-\frac{2\sqrt{6}}{3}
The equation is now solved.