Solve for ω_f
\omega _{f}=\frac{700}{101}\approx 6.930693069
Share
Copied to clipboard
\frac{10}{2}\times 1^{2}\times 7=\left(\frac{1}{2}\times 10\times 1^{2}+0.2\times 0.5^{2}\right)\omega _{f}
Multiply \frac{1}{2} and 10 to get \frac{10}{2}.
5\times 1^{2}\times 7=\left(\frac{1}{2}\times 10\times 1^{2}+0.2\times 0.5^{2}\right)\omega _{f}
Divide 10 by 2 to get 5.
5\times 1\times 7=\left(\frac{1}{2}\times 10\times 1^{2}+0.2\times 0.5^{2}\right)\omega _{f}
Calculate 1 to the power of 2 and get 1.
5\times 7=\left(\frac{1}{2}\times 10\times 1^{2}+0.2\times 0.5^{2}\right)\omega _{f}
Multiply 5 and 1 to get 5.
35=\left(\frac{1}{2}\times 10\times 1^{2}+0.2\times 0.5^{2}\right)\omega _{f}
Multiply 5 and 7 to get 35.
35=\left(\frac{10}{2}\times 1^{2}+0.2\times 0.5^{2}\right)\omega _{f}
Multiply \frac{1}{2} and 10 to get \frac{10}{2}.
35=\left(5\times 1^{2}+0.2\times 0.5^{2}\right)\omega _{f}
Divide 10 by 2 to get 5.
35=\left(5\times 1+0.2\times 0.5^{2}\right)\omega _{f}
Calculate 1 to the power of 2 and get 1.
35=\left(5+0.2\times 0.5^{2}\right)\omega _{f}
Multiply 5 and 1 to get 5.
35=\left(5+0.2\times 0.25\right)\omega _{f}
Calculate 0.5 to the power of 2 and get 0.25.
35=\left(5+0.05\right)\omega _{f}
Multiply 0.2 and 0.25 to get 0.05.
35=5.05\omega _{f}
Add 5 and 0.05 to get 5.05.
5.05\omega _{f}=35
Swap sides so that all variable terms are on the left hand side.
\omega _{f}=\frac{35}{5.05}
Divide both sides by 5.05.
\omega _{f}=\frac{3500}{505}
Expand \frac{35}{5.05} by multiplying both numerator and the denominator by 100.
\omega _{f}=\frac{700}{101}
Reduce the fraction \frac{3500}{505} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}