Evaluate
\frac{99}{14}\approx 7.071428571
Factor
\frac{3 ^ {2} \cdot 11}{2 \cdot 7} = 7\frac{1}{14} = 7.071428571428571
Share
Copied to clipboard
\frac{\frac{1\times 19}{2\times 7}}{\frac{2}{4}-\frac{1}{6}}+3
Multiply \frac{1}{2} times \frac{19}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{19}{14}}{\frac{2}{4}-\frac{1}{6}}+3
Do the multiplications in the fraction \frac{1\times 19}{2\times 7}.
\frac{\frac{19}{14}}{\frac{1}{2}-\frac{1}{6}}+3
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{19}{14}}{\frac{3}{6}-\frac{1}{6}}+3
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
\frac{\frac{19}{14}}{\frac{3-1}{6}}+3
Since \frac{3}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{19}{14}}{\frac{2}{6}}+3
Subtract 1 from 3 to get 2.
\frac{\frac{19}{14}}{\frac{1}{3}}+3
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{19}{14}\times 3+3
Divide \frac{19}{14} by \frac{1}{3} by multiplying \frac{19}{14} by the reciprocal of \frac{1}{3}.
\frac{19\times 3}{14}+3
Express \frac{19}{14}\times 3 as a single fraction.
\frac{57}{14}+3
Multiply 19 and 3 to get 57.
\frac{57}{14}+\frac{42}{14}
Convert 3 to fraction \frac{42}{14}.
\frac{57+42}{14}
Since \frac{57}{14} and \frac{42}{14} have the same denominator, add them by adding their numerators.
\frac{99}{14}
Add 57 and 42 to get 99.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}