Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{2}+\frac{1}{2}+\frac{\frac{1}{2}+\frac{2}{6}}{\frac{10}{8}}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 3 from 4 to get 1.
\frac{\frac{1+1}{2}+\frac{\frac{1}{2}+\frac{2}{6}}{\frac{10}{8}}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Since \frac{1}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{2}{2}+\frac{\frac{1}{2}+\frac{2}{6}}{\frac{10}{8}}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Add 1 and 1 to get 2.
\frac{1+\frac{\frac{1}{2}+\frac{2}{6}}{\frac{10}{8}}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Divide 2 by 2 to get 1.
\frac{1+\frac{\frac{1}{2}+\frac{1}{3}}{\frac{10}{8}}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{1+\frac{\frac{3}{6}+\frac{2}{6}}{\frac{10}{8}}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{1+\frac{\frac{3+2}{6}}{\frac{10}{8}}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{1+\frac{\frac{5}{6}}{\frac{10}{8}}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Add 3 and 2 to get 5.
\frac{1+\frac{\frac{5}{6}}{\frac{5}{4}}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Reduce the fraction \frac{10}{8} to lowest terms by extracting and canceling out 2.
\frac{1+\frac{5}{6}\times \frac{4}{5}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Divide \frac{5}{6} by \frac{5}{4} by multiplying \frac{5}{6} by the reciprocal of \frac{5}{4}.
\frac{1+\frac{5\times 4}{6\times 5}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Multiply \frac{5}{6} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1+\frac{4}{6}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Cancel out 5 in both numerator and denominator.
\frac{1+\frac{2}{3}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{3}{3}+\frac{2}{3}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{3+2}{3}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{3}}{\left(\frac{3}{2}\right)^{2}}-\left(\frac{1}{2}\right)^{1}
Add 3 and 2 to get 5.
\frac{\frac{5}{3}}{\frac{9}{4}}-\left(\frac{1}{2}\right)^{1}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{5}{3}\times \frac{4}{9}-\left(\frac{1}{2}\right)^{1}
Divide \frac{5}{3} by \frac{9}{4} by multiplying \frac{5}{3} by the reciprocal of \frac{9}{4}.
\frac{5\times 4}{3\times 9}-\left(\frac{1}{2}\right)^{1}
Multiply \frac{5}{3} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{20}{27}-\left(\frac{1}{2}\right)^{1}
Do the multiplications in the fraction \frac{5\times 4}{3\times 9}.
\frac{20}{27}-\frac{1}{2}
Calculate \frac{1}{2} to the power of 1 and get \frac{1}{2}.
\frac{40}{54}-\frac{27}{54}
Least common multiple of 27 and 2 is 54. Convert \frac{20}{27} and \frac{1}{2} to fractions with denominator 54.
\frac{40-27}{54}
Since \frac{40}{54} and \frac{27}{54} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{54}
Subtract 27 from 40 to get 13.