Evaluate
\frac{31\left(a^{2}+7\right)}{19\left(a^{2}+45\right)}
Expand
\frac{31\left(a^{2}+7\right)}{19\left(a^{2}+45\right)}
Share
Copied to clipboard
\left(\frac{1}{4+32+2}-\frac{1}{a^{2}+42+3}\right)\left(2^{2}+52+6\right)
Calculate 2 to the power of 2 and get 4.
\left(\frac{1}{36+2}-\frac{1}{a^{2}+42+3}\right)\left(2^{2}+52+6\right)
Add 4 and 32 to get 36.
\left(\frac{1}{38}-\frac{1}{a^{2}+42+3}\right)\left(2^{2}+52+6\right)
Add 36 and 2 to get 38.
\left(\frac{1}{38}-\frac{1}{a^{2}+45}\right)\left(2^{2}+52+6\right)
Add 42 and 3 to get 45.
\left(\frac{a^{2}+45}{38\left(a^{2}+45\right)}-\frac{38}{38\left(a^{2}+45\right)}\right)\left(2^{2}+52+6\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 38 and a^{2}+45 is 38\left(a^{2}+45\right). Multiply \frac{1}{38} times \frac{a^{2}+45}{a^{2}+45}. Multiply \frac{1}{a^{2}+45} times \frac{38}{38}.
\frac{a^{2}+45-38}{38\left(a^{2}+45\right)}\left(2^{2}+52+6\right)
Since \frac{a^{2}+45}{38\left(a^{2}+45\right)} and \frac{38}{38\left(a^{2}+45\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+7}{38\left(a^{2}+45\right)}\left(2^{2}+52+6\right)
Combine like terms in a^{2}+45-38.
\frac{a^{2}+7}{38\left(a^{2}+45\right)}\left(4+52+6\right)
Calculate 2 to the power of 2 and get 4.
\frac{a^{2}+7}{38\left(a^{2}+45\right)}\left(56+6\right)
Add 4 and 52 to get 56.
\frac{a^{2}+7}{38\left(a^{2}+45\right)}\times 62
Add 56 and 6 to get 62.
\frac{\left(a^{2}+7\right)\times 62}{38\left(a^{2}+45\right)}
Express \frac{a^{2}+7}{38\left(a^{2}+45\right)}\times 62 as a single fraction.
\frac{31\left(a^{2}+7\right)}{19\left(a^{2}+45\right)}
Cancel out 2 in both numerator and denominator.
\frac{31a^{2}+217}{19\left(a^{2}+45\right)}
Use the distributive property to multiply 31 by a^{2}+7.
\frac{31a^{2}+217}{19a^{2}+855}
Use the distributive property to multiply 19 by a^{2}+45.
\left(\frac{1}{4+32+2}-\frac{1}{a^{2}+42+3}\right)\left(2^{2}+52+6\right)
Calculate 2 to the power of 2 and get 4.
\left(\frac{1}{36+2}-\frac{1}{a^{2}+42+3}\right)\left(2^{2}+52+6\right)
Add 4 and 32 to get 36.
\left(\frac{1}{38}-\frac{1}{a^{2}+42+3}\right)\left(2^{2}+52+6\right)
Add 36 and 2 to get 38.
\left(\frac{1}{38}-\frac{1}{a^{2}+45}\right)\left(2^{2}+52+6\right)
Add 42 and 3 to get 45.
\left(\frac{a^{2}+45}{38\left(a^{2}+45\right)}-\frac{38}{38\left(a^{2}+45\right)}\right)\left(2^{2}+52+6\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 38 and a^{2}+45 is 38\left(a^{2}+45\right). Multiply \frac{1}{38} times \frac{a^{2}+45}{a^{2}+45}. Multiply \frac{1}{a^{2}+45} times \frac{38}{38}.
\frac{a^{2}+45-38}{38\left(a^{2}+45\right)}\left(2^{2}+52+6\right)
Since \frac{a^{2}+45}{38\left(a^{2}+45\right)} and \frac{38}{38\left(a^{2}+45\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+7}{38\left(a^{2}+45\right)}\left(2^{2}+52+6\right)
Combine like terms in a^{2}+45-38.
\frac{a^{2}+7}{38\left(a^{2}+45\right)}\left(4+52+6\right)
Calculate 2 to the power of 2 and get 4.
\frac{a^{2}+7}{38\left(a^{2}+45\right)}\left(56+6\right)
Add 4 and 52 to get 56.
\frac{a^{2}+7}{38\left(a^{2}+45\right)}\times 62
Add 56 and 6 to get 62.
\frac{\left(a^{2}+7\right)\times 62}{38\left(a^{2}+45\right)}
Express \frac{a^{2}+7}{38\left(a^{2}+45\right)}\times 62 as a single fraction.
\frac{31\left(a^{2}+7\right)}{19\left(a^{2}+45\right)}
Cancel out 2 in both numerator and denominator.
\frac{31a^{2}+217}{19\left(a^{2}+45\right)}
Use the distributive property to multiply 31 by a^{2}+7.
\frac{31a^{2}+217}{19a^{2}+855}
Use the distributive property to multiply 19 by a^{2}+45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}