Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\frac{\frac{1}{12}-\frac{10}{12}+\frac{1}{2}}{-\frac{1}{24}}
Least common multiple of 12 and 6 is 12. Convert \frac{1}{12} and \frac{5}{6} to fractions with denominator 12.
\frac{\frac{1-10}{12}+\frac{1}{2}}{-\frac{1}{24}}
Since \frac{1}{12} and \frac{10}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-9}{12}+\frac{1}{2}}{-\frac{1}{24}}
Subtract 10 from 1 to get -9.
\frac{-\frac{3}{4}+\frac{1}{2}}{-\frac{1}{24}}
Reduce the fraction \frac{-9}{12} to lowest terms by extracting and canceling out 3.
\frac{-\frac{3}{4}+\frac{2}{4}}{-\frac{1}{24}}
Least common multiple of 4 and 2 is 4. Convert -\frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{\frac{-3+2}{4}}{-\frac{1}{24}}
Since -\frac{3}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{4}}{-\frac{1}{24}}
Add -3 and 2 to get -1.
-\frac{1}{4}\left(-24\right)
Divide -\frac{1}{4} by -\frac{1}{24} by multiplying -\frac{1}{4} by the reciprocal of -\frac{1}{24}.
\frac{-\left(-24\right)}{4}
Express -\frac{1}{4}\left(-24\right) as a single fraction.
\frac{24}{4}
Multiply -1 and -24 to get 24.
6
Divide 24 by 4 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}