Solve for x
x = -\frac{115}{3} = -38\frac{1}{3} \approx -38.333333333
Graph
Share
Copied to clipboard
60\left(\frac{1}{12}+\frac{1}{2}\right)\times 5+3x=60
Multiply both sides of the equation by 60, the least common multiple of 12,2,20.
60\left(\frac{1}{12}+\frac{6}{12}\right)\times 5+3x=60
Least common multiple of 12 and 2 is 12. Convert \frac{1}{12} and \frac{1}{2} to fractions with denominator 12.
60\times \frac{1+6}{12}\times 5+3x=60
Since \frac{1}{12} and \frac{6}{12} have the same denominator, add them by adding their numerators.
60\times \frac{7}{12}\times 5+3x=60
Add 1 and 6 to get 7.
\frac{60\times 7}{12}\times 5+3x=60
Express 60\times \frac{7}{12} as a single fraction.
\frac{420}{12}\times 5+3x=60
Multiply 60 and 7 to get 420.
35\times 5+3x=60
Divide 420 by 12 to get 35.
175+3x=60
Multiply 35 and 5 to get 175.
3x=60-175
Subtract 175 from both sides.
3x=-115
Subtract 175 from 60 to get -115.
x=\frac{-115}{3}
Divide both sides by 3.
x=-\frac{115}{3}
Fraction \frac{-115}{3} can be rewritten as -\frac{115}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}