Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and 1+x is \left(x+1\right)\left(-x+1\right). Multiply \frac{1}{1-x} times \frac{x+1}{x+1}. Multiply \frac{1}{1+x} times \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Since \frac{x+1}{\left(x+1\right)\left(-x+1\right)} and \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Do the multiplications in x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Combine like terms in x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Factor x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Since \frac{x}{\left(x-1\right)\left(x+1\right)} and \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Divide \frac{2x}{\left(x+1\right)\left(-x+1\right)} by \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{2x}{\left(x+1\right)\left(-x+1\right)} by the reciprocal of \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Extract the negative sign in x-1.
\frac{-2}{x^{2}}
Cancel out x\left(x+1\right)\left(-x+1\right) in both numerator and denominator.
\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and 1+x is \left(x+1\right)\left(-x+1\right). Multiply \frac{1}{1-x} times \frac{x+1}{x+1}. Multiply \frac{1}{1+x} times \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Since \frac{x+1}{\left(x+1\right)\left(-x+1\right)} and \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Do the multiplications in x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Combine like terms in x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Factor x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Since \frac{x}{\left(x-1\right)\left(x+1\right)} and \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Divide \frac{2x}{\left(x+1\right)\left(-x+1\right)} by \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{2x}{\left(x+1\right)\left(-x+1\right)} by the reciprocal of \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Extract the negative sign in x-1.
\frac{-2}{x^{2}}
Cancel out x\left(x+1\right)\left(-x+1\right) in both numerator and denominator.