Evaluate
-\frac{1}{2\left(2x-1\right)\left(6x-1\right)}
Expand
-\frac{1}{\left(4x-2\right)\left(6x-1\right)}
Graph
Share
Copied to clipboard
\left(1-\frac{4x^{2}}{4x^{2}-1}\right)\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Divide 1 by 1 to get 1.
\left(1-\frac{4x^{2}}{\left(2x-1\right)\left(2x+1\right)}\right)\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Factor 4x^{2}-1.
\left(\frac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\frac{4x^{2}}{\left(2x-1\right)\left(2x+1\right)}\right)\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}.
\frac{\left(2x-1\right)\left(2x+1\right)-4x^{2}}{\left(2x-1\right)\left(2x+1\right)}\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Since \frac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)} and \frac{4x^{2}}{\left(2x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+2x-2x-1-4x^{2}}{\left(2x-1\right)\left(2x+1\right)}\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Do the multiplications in \left(2x-1\right)\left(2x+1\right)-4x^{2}.
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Combine like terms in 4x^{2}+2x-2x-1-4x^{2}.
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\left(\frac{6x-1}{2\left(6x-1\right)}+\frac{2\left(1-2x\right)}{2\left(6x-1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 6x-1 is 2\left(6x-1\right). Multiply \frac{1}{2} times \frac{6x-1}{6x-1}. Multiply \frac{1-2x}{6x-1} times \frac{2}{2}.
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\times \frac{6x-1+2\left(1-2x\right)}{2\left(6x-1\right)}
Since \frac{6x-1}{2\left(6x-1\right)} and \frac{2\left(1-2x\right)}{2\left(6x-1\right)} have the same denominator, add them by adding their numerators.
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\times \frac{6x-1+2-4x}{2\left(6x-1\right)}
Do the multiplications in 6x-1+2\left(1-2x\right).
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\times \frac{2x+1}{2\left(6x-1\right)}
Combine like terms in 6x-1+2-4x.
\frac{-\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\times 2\left(6x-1\right)}
Multiply \frac{-1}{\left(2x-1\right)\left(2x+1\right)} times \frac{2x+1}{2\left(6x-1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{2\left(2x-1\right)\left(6x-1\right)}
Cancel out 2x+1 in both numerator and denominator.
\frac{-1}{\left(4x-2\right)\left(6x-1\right)}
Use the distributive property to multiply 2 by 2x-1.
\frac{-1}{24x^{2}-16x+2}
Use the distributive property to multiply 4x-2 by 6x-1 and combine like terms.
\left(1-\frac{4x^{2}}{4x^{2}-1}\right)\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Divide 1 by 1 to get 1.
\left(1-\frac{4x^{2}}{\left(2x-1\right)\left(2x+1\right)}\right)\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Factor 4x^{2}-1.
\left(\frac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\frac{4x^{2}}{\left(2x-1\right)\left(2x+1\right)}\right)\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}.
\frac{\left(2x-1\right)\left(2x+1\right)-4x^{2}}{\left(2x-1\right)\left(2x+1\right)}\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Since \frac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)} and \frac{4x^{2}}{\left(2x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+2x-2x-1-4x^{2}}{\left(2x-1\right)\left(2x+1\right)}\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Do the multiplications in \left(2x-1\right)\left(2x+1\right)-4x^{2}.
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\left(\frac{1}{2}+\frac{1-2x}{6x-1}\right)
Combine like terms in 4x^{2}+2x-2x-1-4x^{2}.
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\left(\frac{6x-1}{2\left(6x-1\right)}+\frac{2\left(1-2x\right)}{2\left(6x-1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 6x-1 is 2\left(6x-1\right). Multiply \frac{1}{2} times \frac{6x-1}{6x-1}. Multiply \frac{1-2x}{6x-1} times \frac{2}{2}.
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\times \frac{6x-1+2\left(1-2x\right)}{2\left(6x-1\right)}
Since \frac{6x-1}{2\left(6x-1\right)} and \frac{2\left(1-2x\right)}{2\left(6x-1\right)} have the same denominator, add them by adding their numerators.
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\times \frac{6x-1+2-4x}{2\left(6x-1\right)}
Do the multiplications in 6x-1+2\left(1-2x\right).
\frac{-1}{\left(2x-1\right)\left(2x+1\right)}\times \frac{2x+1}{2\left(6x-1\right)}
Combine like terms in 6x-1+2-4x.
\frac{-\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\times 2\left(6x-1\right)}
Multiply \frac{-1}{\left(2x-1\right)\left(2x+1\right)} times \frac{2x+1}{2\left(6x-1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{2\left(2x-1\right)\left(6x-1\right)}
Cancel out 2x+1 in both numerator and denominator.
\frac{-1}{\left(4x-2\right)\left(6x-1\right)}
Use the distributive property to multiply 2 by 2x-1.
\frac{-1}{24x^{2}-16x+2}
Use the distributive property to multiply 4x-2 by 6x-1 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}