( \frac { 1 } { ( x - 1 ) ^ { 2 } } - \frac { 3 } { 2 x - 2 } = \frac { - 3 } { 2 x + 2 } )
Solve for x
x=2
Graph
Share
Copied to clipboard
2x+2-\left(x^{2}-1\right)\times 3=\left(x-1\right)^{2}\left(-3\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+1\right)\left(x-1\right)^{2}, the least common multiple of \left(x-1\right)^{2},2x-2,2x+2.
2x+2-\left(3x^{2}-3\right)=\left(x-1\right)^{2}\left(-3\right)
Use the distributive property to multiply x^{2}-1 by 3.
2x+2-3x^{2}+3=\left(x-1\right)^{2}\left(-3\right)
To find the opposite of 3x^{2}-3, find the opposite of each term.
2x+5-3x^{2}=\left(x-1\right)^{2}\left(-3\right)
Add 2 and 3 to get 5.
2x+5-3x^{2}=\left(x^{2}-2x+1\right)\left(-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x+5-3x^{2}=-3x^{2}+6x-3
Use the distributive property to multiply x^{2}-2x+1 by -3.
2x+5-3x^{2}+3x^{2}=6x-3
Add 3x^{2} to both sides.
2x+5=6x-3
Combine -3x^{2} and 3x^{2} to get 0.
2x+5-6x=-3
Subtract 6x from both sides.
-4x+5=-3
Combine 2x and -6x to get -4x.
-4x=-3-5
Subtract 5 from both sides.
-4x=-8
Subtract 5 from -3 to get -8.
x=\frac{-8}{-4}
Divide both sides by -4.
x=2
Divide -8 by -4 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}