Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-1\right)^{2}+9\times \frac{1^{2}}{\sqrt{3}}-1
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{\sqrt{3}}{3}-1\right)^{2}+9\times \frac{1^{2}}{\sqrt{3}}-1
The square of \sqrt{3} is 3.
\left(\frac{\sqrt{3}}{3}-\frac{3}{3}\right)^{2}+9\times \frac{1^{2}}{\sqrt{3}}-1
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\left(\frac{\sqrt{3}-3}{3}\right)^{2}+9\times \frac{1^{2}}{\sqrt{3}}-1
Since \frac{\sqrt{3}}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{3}-3\right)^{2}}{3^{2}}+9\times \frac{1^{2}}{\sqrt{3}}-1
To raise \frac{\sqrt{3}-3}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}-3\right)^{2}}{3^{2}}+9\times \frac{1}{\sqrt{3}}-1
Calculate 1 to the power of 2 and get 1.
\frac{\left(\sqrt{3}-3\right)^{2}}{3^{2}}+9\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-1
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\sqrt{3}-3\right)^{2}}{3^{2}}+9\times \frac{\sqrt{3}}{3}-1
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}-3\right)^{2}}{3^{2}}+3\sqrt{3}-1
Cancel out 3, the greatest common factor in 9 and 3.
\frac{\left(\sqrt{3}-3\right)^{2}}{3^{2}}+\frac{\left(3\sqrt{3}-1\right)\times 3^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{3}-1 times \frac{3^{2}}{3^{2}}.
\frac{\left(\sqrt{3}-3\right)^{2}+\left(3\sqrt{3}-1\right)\times 3^{2}}{3^{2}}
Since \frac{\left(\sqrt{3}-3\right)^{2}}{3^{2}} and \frac{\left(3\sqrt{3}-1\right)\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{3}\right)^{2}-6\sqrt{3}+9+27\sqrt{3}-9}{3^{2}}
Do the multiplications in \left(\sqrt{3}-3\right)^{2}+\left(3\sqrt{3}-1\right)\times 3^{2}.
\frac{3+21\sqrt{3}}{3^{2}}
Do the calculations in \left(\sqrt{3}\right)^{2}-6\sqrt{3}+9+27\sqrt{3}-9.
\frac{3+21\sqrt{3}}{9}
Expand 3^{2}.