Skip to main content
Evaluate
Tick mark Image

Share

\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times \frac{1}{2}+\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times \frac{1}{2}+\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{1}{\sqrt{2}}\times \frac{1}{2}+\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
Multiply \frac{\sqrt{2}}{2} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{1}{2}+\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2}\times \frac{1}{2}+\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2\times 2}+\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
Multiply \frac{\sqrt{2}}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2\times 2}+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2\times 2}+\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2\times 2}+\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
Multiply \frac{\sqrt{2}}{2} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
2\times \frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2\times 2}-\frac{1}{\sqrt{2}}\times \frac{1}{2}
Combine \frac{\sqrt{2}\sqrt{3}}{2\times 2} and \frac{\sqrt{2}\sqrt{3}}{2\times 2} to get 2\times \frac{\sqrt{2}\sqrt{3}}{2\times 2}.
2\times \frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2\times 2}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{1}{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\times \frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2\times 2}-\frac{\sqrt{2}}{2}\times \frac{1}{2}
The square of \sqrt{2} is 2.
2\times \frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2\times 2}-\frac{\sqrt{2}}{2\times 2}
Multiply \frac{\sqrt{2}}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2\times \frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{2\times 2}
Multiply 2 and 2 to get 4.
2\times \frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
2\times \frac{\sqrt{2}\sqrt{3}}{2\times 2}
Combine \frac{\sqrt{2}}{4} and -\frac{\sqrt{2}}{4} to get 0.
2\times \frac{\sqrt{6}}{2\times 2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\times \frac{\sqrt{6}}{4}
Multiply 2 and 2 to get 4.
\frac{\sqrt{6}}{2}
Cancel out 4, the greatest common factor in 2 and 4.