Evaluate
\frac{1}{a}
Expand
\frac{1}{a}
Share
Copied to clipboard
\frac{\frac{\left(1+a\right)a^{2}}{a^{2}\left(a^{2}+1\right)}+\frac{\left(2+a\right)\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)}-\frac{1}{a}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2}+1 and a^{2} is a^{2}\left(a^{2}+1\right). Multiply \frac{1+a}{a^{2}+1} times \frac{a^{2}}{a^{2}}. Multiply \frac{2+a}{a^{2}} times \frac{a^{2}+1}{a^{2}+1}.
\frac{\frac{\left(1+a\right)a^{2}+\left(2+a\right)\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)}-\frac{1}{a}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Since \frac{\left(1+a\right)a^{2}}{a^{2}\left(a^{2}+1\right)} and \frac{\left(2+a\right)\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+a^{3}+2a^{2}+2+a^{3}+a}{a^{2}\left(a^{2}+1\right)}-\frac{1}{a}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Do the multiplications in \left(1+a\right)a^{2}+\left(2+a\right)\left(a^{2}+1\right).
\frac{\frac{3a^{2}+2a^{3}+2+a}{a^{2}\left(a^{2}+1\right)}-\frac{1}{a}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Combine like terms in a^{2}+a^{3}+2a^{2}+2+a^{3}+a.
\frac{\frac{3a^{2}+2a^{3}+2+a}{a^{2}\left(a^{2}+1\right)}-\frac{a\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2}\left(a^{2}+1\right) and a is a^{2}\left(a^{2}+1\right). Multiply \frac{1}{a} times \frac{a\left(a^{2}+1\right)}{a\left(a^{2}+1\right)}.
\frac{\frac{3a^{2}+2a^{3}+2+a-a\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Since \frac{3a^{2}+2a^{3}+2+a}{a^{2}\left(a^{2}+1\right)} and \frac{a\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}+2a^{3}+2+a-a^{3}-a}{a^{2}\left(a^{2}+1\right)}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Do the multiplications in 3a^{2}+2a^{3}+2+a-a\left(a^{2}+1\right).
\frac{\frac{3a^{2}+a^{3}+2}{a^{2}\left(a^{2}+1\right)}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Combine like terms in 3a^{2}+2a^{3}+2+a-a^{3}-a.
\frac{\left(3a^{2}+a^{3}+2\right)\left(a^{4}-1\right)}{a^{2}\left(a^{2}+1\right)\left(a^{4}+3a^{3}+2a\right)}\left(1-\frac{1}{a^{2}}\right)^{-1}
Divide \frac{3a^{2}+a^{3}+2}{a^{2}\left(a^{2}+1\right)} by \frac{a^{4}+3a^{3}+2a}{a^{4}-1} by multiplying \frac{3a^{2}+a^{3}+2}{a^{2}\left(a^{2}+1\right)} by the reciprocal of \frac{a^{4}+3a^{3}+2a}{a^{4}-1}.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)\left(a^{3}+3a^{2}+2\right)}{aa^{2}\left(a^{2}+1\right)\left(a^{3}+3a^{2}+2\right)}\left(1-\frac{1}{a^{2}}\right)^{-1}
Factor the expressions that are not already factored in \frac{\left(3a^{2}+a^{3}+2\right)\left(a^{4}-1\right)}{a^{2}\left(a^{2}+1\right)\left(a^{4}+3a^{3}+2a\right)}.
\frac{\left(a-1\right)\left(a+1\right)}{aa^{2}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Cancel out \left(a^{2}+1\right)\left(a^{3}+3a^{2}+2\right) in both numerator and denominator.
\frac{\left(a-1\right)\left(a+1\right)}{a^{3}}\left(1-\frac{1}{a^{2}}\right)^{-1}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(a-1\right)\left(a+1\right)}{a^{3}}\left(\frac{a^{2}}{a^{2}}-\frac{1}{a^{2}}\right)^{-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a^{2}}{a^{2}}.
\frac{\left(a-1\right)\left(a+1\right)}{a^{3}}\times \left(\frac{a^{2}-1}{a^{2}}\right)^{-1}
Since \frac{a^{2}}{a^{2}} and \frac{1}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(a-1\right)\left(a+1\right)}{a^{3}}\times \frac{\left(a^{2}-1\right)^{-1}}{\left(a^{2}\right)^{-1}}
To raise \frac{a^{2}-1}{a^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}-1\right)^{-1}}{a^{3}\left(a^{2}\right)^{-1}}
Multiply \frac{\left(a-1\right)\left(a+1\right)}{a^{3}} times \frac{\left(a^{2}-1\right)^{-1}}{\left(a^{2}\right)^{-1}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}-1\right)^{-1}}{a^{3}a^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}-1\right)^{-1}}{a^{1}}
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}-1\right)^{-1}}{a}
Calculate a to the power of 1 and get a.
\frac{\left(a^{2}-1\right)\left(a^{2}-1\right)^{-1}}{a}
Use the distributive property to multiply a-1 by a+1 and combine like terms.
\frac{1}{a}
Multiply a^{2}-1 and \left(a^{2}-1\right)^{-1} to get 1.
\frac{\frac{\left(1+a\right)a^{2}}{a^{2}\left(a^{2}+1\right)}+\frac{\left(2+a\right)\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)}-\frac{1}{a}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2}+1 and a^{2} is a^{2}\left(a^{2}+1\right). Multiply \frac{1+a}{a^{2}+1} times \frac{a^{2}}{a^{2}}. Multiply \frac{2+a}{a^{2}} times \frac{a^{2}+1}{a^{2}+1}.
\frac{\frac{\left(1+a\right)a^{2}+\left(2+a\right)\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)}-\frac{1}{a}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Since \frac{\left(1+a\right)a^{2}}{a^{2}\left(a^{2}+1\right)} and \frac{\left(2+a\right)\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+a^{3}+2a^{2}+2+a^{3}+a}{a^{2}\left(a^{2}+1\right)}-\frac{1}{a}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Do the multiplications in \left(1+a\right)a^{2}+\left(2+a\right)\left(a^{2}+1\right).
\frac{\frac{3a^{2}+2a^{3}+2+a}{a^{2}\left(a^{2}+1\right)}-\frac{1}{a}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Combine like terms in a^{2}+a^{3}+2a^{2}+2+a^{3}+a.
\frac{\frac{3a^{2}+2a^{3}+2+a}{a^{2}\left(a^{2}+1\right)}-\frac{a\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2}\left(a^{2}+1\right) and a is a^{2}\left(a^{2}+1\right). Multiply \frac{1}{a} times \frac{a\left(a^{2}+1\right)}{a\left(a^{2}+1\right)}.
\frac{\frac{3a^{2}+2a^{3}+2+a-a\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Since \frac{3a^{2}+2a^{3}+2+a}{a^{2}\left(a^{2}+1\right)} and \frac{a\left(a^{2}+1\right)}{a^{2}\left(a^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}+2a^{3}+2+a-a^{3}-a}{a^{2}\left(a^{2}+1\right)}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Do the multiplications in 3a^{2}+2a^{3}+2+a-a\left(a^{2}+1\right).
\frac{\frac{3a^{2}+a^{3}+2}{a^{2}\left(a^{2}+1\right)}}{\frac{a^{4}+3a^{3}+2a}{a^{4}-1}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Combine like terms in 3a^{2}+2a^{3}+2+a-a^{3}-a.
\frac{\left(3a^{2}+a^{3}+2\right)\left(a^{4}-1\right)}{a^{2}\left(a^{2}+1\right)\left(a^{4}+3a^{3}+2a\right)}\left(1-\frac{1}{a^{2}}\right)^{-1}
Divide \frac{3a^{2}+a^{3}+2}{a^{2}\left(a^{2}+1\right)} by \frac{a^{4}+3a^{3}+2a}{a^{4}-1} by multiplying \frac{3a^{2}+a^{3}+2}{a^{2}\left(a^{2}+1\right)} by the reciprocal of \frac{a^{4}+3a^{3}+2a}{a^{4}-1}.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)\left(a^{3}+3a^{2}+2\right)}{aa^{2}\left(a^{2}+1\right)\left(a^{3}+3a^{2}+2\right)}\left(1-\frac{1}{a^{2}}\right)^{-1}
Factor the expressions that are not already factored in \frac{\left(3a^{2}+a^{3}+2\right)\left(a^{4}-1\right)}{a^{2}\left(a^{2}+1\right)\left(a^{4}+3a^{3}+2a\right)}.
\frac{\left(a-1\right)\left(a+1\right)}{aa^{2}}\left(1-\frac{1}{a^{2}}\right)^{-1}
Cancel out \left(a^{2}+1\right)\left(a^{3}+3a^{2}+2\right) in both numerator and denominator.
\frac{\left(a-1\right)\left(a+1\right)}{a^{3}}\left(1-\frac{1}{a^{2}}\right)^{-1}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(a-1\right)\left(a+1\right)}{a^{3}}\left(\frac{a^{2}}{a^{2}}-\frac{1}{a^{2}}\right)^{-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a^{2}}{a^{2}}.
\frac{\left(a-1\right)\left(a+1\right)}{a^{3}}\times \left(\frac{a^{2}-1}{a^{2}}\right)^{-1}
Since \frac{a^{2}}{a^{2}} and \frac{1}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(a-1\right)\left(a+1\right)}{a^{3}}\times \frac{\left(a^{2}-1\right)^{-1}}{\left(a^{2}\right)^{-1}}
To raise \frac{a^{2}-1}{a^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}-1\right)^{-1}}{a^{3}\left(a^{2}\right)^{-1}}
Multiply \frac{\left(a-1\right)\left(a+1\right)}{a^{3}} times \frac{\left(a^{2}-1\right)^{-1}}{\left(a^{2}\right)^{-1}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}-1\right)^{-1}}{a^{3}a^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}-1\right)^{-1}}{a^{1}}
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}-1\right)^{-1}}{a}
Calculate a to the power of 1 and get a.
\frac{\left(a^{2}-1\right)\left(a^{2}-1\right)^{-1}}{a}
Use the distributive property to multiply a-1 by a+1 and combine like terms.
\frac{1}{a}
Multiply a^{2}-1 and \left(a^{2}-1\right)^{-1} to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}